ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo00 GIF version

Theorem fo00 5411
Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
fo00 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem fo00
StepHypRef Expression
1 fofn 5355 . . . . . 6 (𝐹:∅–onto𝐴𝐹 Fn ∅)
2 fn0 5250 . . . . . . 7 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
3 f10 5409 . . . . . . . 8 ∅:∅–1-1𝐴
4 f1eq1 5331 . . . . . . . 8 (𝐹 = ∅ → (𝐹:∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
53, 4mpbiri 167 . . . . . . 7 (𝐹 = ∅ → 𝐹:∅–1-1𝐴)
62, 5sylbi 120 . . . . . 6 (𝐹 Fn ∅ → 𝐹:∅–1-1𝐴)
71, 6syl 14 . . . . 5 (𝐹:∅–onto𝐴𝐹:∅–1-1𝐴)
87ancri 322 . . . 4 (𝐹:∅–onto𝐴 → (𝐹:∅–1-1𝐴𝐹:∅–onto𝐴))
9 df-f1o 5138 . . . 4 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹:∅–1-1𝐴𝐹:∅–onto𝐴))
108, 9sylibr 133 . . 3 (𝐹:∅–onto𝐴𝐹:∅–1-1-onto𝐴)
11 f1ofo 5382 . . 3 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
1210, 11impbii 125 . 2 (𝐹:∅–onto𝐴𝐹:∅–1-1-onto𝐴)
13 f1o00 5410 . 2 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
1412, 13bitri 183 1 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1332  c0 3368   Fn wfn 5126  1-1wf1 5128  ontowfo 5129  1-1-ontowf1o 5130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138
This theorem is referenced by:  enumct  7008  fsumf1o  11191
  Copyright terms: Public domain W3C validator