| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fo00 | GIF version | ||
| Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| fo00 | ⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn 5482 | . . . . . 6 ⊢ (𝐹:∅–onto→𝐴 → 𝐹 Fn ∅) | |
| 2 | fn0 5377 | . . . . . . 7 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
| 3 | f10 5538 | . . . . . . . 8 ⊢ ∅:∅–1-1→𝐴 | |
| 4 | f1eq1 5458 | . . . . . . . 8 ⊢ (𝐹 = ∅ → (𝐹:∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
| 5 | 3, 4 | mpbiri 168 | . . . . . . 7 ⊢ (𝐹 = ∅ → 𝐹:∅–1-1→𝐴) |
| 6 | 2, 5 | sylbi 121 | . . . . . 6 ⊢ (𝐹 Fn ∅ → 𝐹:∅–1-1→𝐴) |
| 7 | 1, 6 | syl 14 | . . . . 5 ⊢ (𝐹:∅–onto→𝐴 → 𝐹:∅–1-1→𝐴) |
| 8 | 7 | ancri 324 | . . . 4 ⊢ (𝐹:∅–onto→𝐴 → (𝐹:∅–1-1→𝐴 ∧ 𝐹:∅–onto→𝐴)) |
| 9 | df-f1o 5265 | . . . 4 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹:∅–1-1→𝐴 ∧ 𝐹:∅–onto→𝐴)) | |
| 10 | 8, 9 | sylibr 134 | . . 3 ⊢ (𝐹:∅–onto→𝐴 → 𝐹:∅–1-1-onto→𝐴) |
| 11 | f1ofo 5511 | . . 3 ⊢ (𝐹:∅–1-1-onto→𝐴 → 𝐹:∅–onto→𝐴) | |
| 12 | 10, 11 | impbii 126 | . 2 ⊢ (𝐹:∅–onto→𝐴 ↔ 𝐹:∅–1-1-onto→𝐴) |
| 13 | f1o00 5539 | . 2 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | |
| 14 | 12, 13 | bitri 184 | 1 ⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∅c0 3450 Fn wfn 5253 –1-1→wf1 5255 –onto→wfo 5256 –1-1-onto→wf1o 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 |
| This theorem is referenced by: enumct 7181 fsumf1o 11555 fprodf1o 11753 |
| Copyright terms: Public domain | W3C validator |