ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo00 GIF version

Theorem fo00 5519
Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
fo00 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem fo00
StepHypRef Expression
1 fofn 5462 . . . . . 6 (𝐹:∅–onto𝐴𝐹 Fn ∅)
2 fn0 5357 . . . . . . 7 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
3 f10 5517 . . . . . . . 8 ∅:∅–1-1𝐴
4 f1eq1 5438 . . . . . . . 8 (𝐹 = ∅ → (𝐹:∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
53, 4mpbiri 168 . . . . . . 7 (𝐹 = ∅ → 𝐹:∅–1-1𝐴)
62, 5sylbi 121 . . . . . 6 (𝐹 Fn ∅ → 𝐹:∅–1-1𝐴)
71, 6syl 14 . . . . 5 (𝐹:∅–onto𝐴𝐹:∅–1-1𝐴)
87ancri 324 . . . 4 (𝐹:∅–onto𝐴 → (𝐹:∅–1-1𝐴𝐹:∅–onto𝐴))
9 df-f1o 5245 . . . 4 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹:∅–1-1𝐴𝐹:∅–onto𝐴))
108, 9sylibr 134 . . 3 (𝐹:∅–onto𝐴𝐹:∅–1-1-onto𝐴)
11 f1ofo 5490 . . 3 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
1210, 11impbii 126 . 2 (𝐹:∅–onto𝐴𝐹:∅–1-1-onto𝐴)
13 f1o00 5518 . 2 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
1412, 13bitri 184 1 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  c0 3437   Fn wfn 5233  1-1wf1 5235  ontowfo 5236  1-1-ontowf1o 5237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-br 4022  df-opab 4083  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245
This theorem is referenced by:  enumct  7148  fsumf1o  11439  fprodf1o  11637
  Copyright terms: Public domain W3C validator