Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosubopt GIF version

Theorem mosubopt 4611
 Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
mosubopt (∀𝑦𝑧∃*𝑥𝜑 → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem mosubopt
StepHypRef Expression
1 nfa1 1522 . . 3 𝑦𝑦𝑧∃*𝑥𝜑
2 nfe1 1473 . . . 4 𝑦𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
32nfmo 2020 . . 3 𝑦∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
4 nfa1 1522 . . . . 5 𝑧𝑧∃*𝑥𝜑
5 nfe1 1473 . . . . . . 7 𝑧𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
65nfex 1617 . . . . . 6 𝑧𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
76nfmo 2020 . . . . 5 𝑧∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
8 copsexg 4173 . . . . . . . 8 (𝐴 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
98mobidv 2036 . . . . . . 7 (𝐴 = ⟨𝑦, 𝑧⟩ → (∃*𝑥𝜑 ↔ ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
109biimpcd 158 . . . . . 6 (∃*𝑥𝜑 → (𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
1110sps 1518 . . . . 5 (∀𝑧∃*𝑥𝜑 → (𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
124, 7, 11exlimd 1577 . . . 4 (∀𝑧∃*𝑥𝜑 → (∃𝑧 𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
1312sps 1518 . . 3 (∀𝑦𝑧∃*𝑥𝜑 → (∃𝑧 𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
141, 3, 13exlimd 1577 . 2 (∀𝑦𝑧∃*𝑥𝜑 → (∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
15 moanimv 2075 . . 3 (∃*𝑥(∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ ∧ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)) ↔ (∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
16 simpl 108 . . . . . 6 ((𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑) → 𝐴 = ⟨𝑦, 𝑧⟩)
17162eximi 1581 . . . . 5 (∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑) → ∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩)
1817ancri 322 . . . 4 (∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑) → (∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ ∧ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
1918moimi 2065 . . 3 (∃*𝑥(∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ ∧ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)) → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
2015, 19sylbir 134 . 2 ((∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)) → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
2114, 20syl 14 1 (∀𝑦𝑧∃*𝑥𝜑 → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103  ∀wal 1330   = wceq 1332  ∃wex 1469  ∃*wmo 2001  ⟨cop 3534 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540 This theorem is referenced by:  mosubop  4612  funoprabg  5877
 Copyright terms: Public domain W3C validator