ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosubopt GIF version

Theorem mosubopt 4739
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
mosubopt (∀𝑦𝑧∃*𝑥𝜑 → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem mosubopt
StepHypRef Expression
1 nfa1 1563 . . 3 𝑦𝑦𝑧∃*𝑥𝜑
2 nfe1 1518 . . . 4 𝑦𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
32nfmo 2073 . . 3 𝑦∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
4 nfa1 1563 . . . . 5 𝑧𝑧∃*𝑥𝜑
5 nfe1 1518 . . . . . . 7 𝑧𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
65nfex 1659 . . . . . 6 𝑧𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
76nfmo 2073 . . . . 5 𝑧∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
8 copsexg 4287 . . . . . . . 8 (𝐴 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
98mobidv 2089 . . . . . . 7 (𝐴 = ⟨𝑦, 𝑧⟩ → (∃*𝑥𝜑 ↔ ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
109biimpcd 159 . . . . . 6 (∃*𝑥𝜑 → (𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
1110sps 1559 . . . . 5 (∀𝑧∃*𝑥𝜑 → (𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
124, 7, 11exlimd 1619 . . . 4 (∀𝑧∃*𝑥𝜑 → (∃𝑧 𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
1312sps 1559 . . 3 (∀𝑦𝑧∃*𝑥𝜑 → (∃𝑧 𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
141, 3, 13exlimd 1619 . 2 (∀𝑦𝑧∃*𝑥𝜑 → (∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
15 moanimv 2128 . . 3 (∃*𝑥(∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ ∧ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)) ↔ (∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
16 simpl 109 . . . . . 6 ((𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑) → 𝐴 = ⟨𝑦, 𝑧⟩)
17162eximi 1623 . . . . 5 (∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑) → ∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩)
1817ancri 324 . . . 4 (∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑) → (∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ ∧ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
1918moimi 2118 . . 3 (∃*𝑥(∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ ∧ ∃𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)) → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
2015, 19sylbir 135 . 2 ((∃𝑦𝑧 𝐴 = ⟨𝑦, 𝑧⟩ → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)) → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
2114, 20syl 14 1 (∀𝑦𝑧∃*𝑥𝜑 → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1370   = wceq 1372  wex 1514  ∃*wmo 2054  cop 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641
This theorem is referenced by:  mosubop  4740  funoprabg  6043
  Copyright terms: Public domain W3C validator