![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-csb | GIF version |
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2974, to prevent ambiguity. Theorem sbcel1g 3088 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3098 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | csb 3069 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1362 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2158 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wsbc 2974 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2173 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1363 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Colors of variables: wff set class |
This definition is referenced by: csb2 3071 csbeq1 3072 cbvcsbw 3073 cbvcsb 3074 csbid 3077 csbco 3079 csbcow 3080 csbtt 3081 sbcel12g 3084 sbceqg 3085 csbeq2 3093 csbeq2d 3094 csbvarg 3097 nfcsb1d 3100 nfcsbd 3104 nfcsbw 3105 csbie2g 3119 csbnestgf 3121 cbvralcsf 3131 cbvrexcsf 3132 cbvreucsf 3133 cbvrabcsf 3134 csbprc 3480 csbexga 4143 bdccsb 14883 |
Copyright terms: Public domain | W3C validator |