ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-csb GIF version

Definition df-csb 3082
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2986, to prevent ambiguity. Theorem sbcel1g 3100 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3110 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
df-csb 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-csb
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3csb 3081 . 2 class 𝐴 / 𝑥𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1363 . . . . 5 class 𝑦
76, 3wcel 2164 . . . 4 wff 𝑦𝐵
87, 1, 2wsbc 2986 . . 3 wff [𝐴 / 𝑥]𝑦𝐵
98, 5cab 2179 . 2 class {𝑦[𝐴 / 𝑥]𝑦𝐵}
104, 9wceq 1364 1 wff 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  csb2  3083  csbeq1  3084  cbvcsbw  3085  cbvcsb  3086  csbid  3089  csbco  3091  csbcow  3092  csbtt  3093  sbcel12g  3096  sbceqg  3097  csbeq2  3105  csbeq2d  3106  csbvarg  3109  nfcsb1d  3112  nfcsbd  3117  nfcsbw  3118  csbie2g  3132  csbnestgf  3134  cbvralcsf  3144  cbvrexcsf  3145  cbvreucsf  3146  cbvrabcsf  3147  csbprc  3493  csbexga  4158  bdccsb  15422
  Copyright terms: Public domain W3C validator