Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-csb | GIF version |
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2955, to prevent ambiguity. Theorem sbcel1g 3068 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3078 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | csb 3049 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1347 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2141 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wsbc 2955 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2156 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1348 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Colors of variables: wff set class |
This definition is referenced by: csb2 3051 csbeq1 3052 cbvcsbw 3053 cbvcsb 3054 csbid 3057 csbco 3059 csbcow 3060 csbtt 3061 sbcel12g 3064 sbceqg 3065 csbeq2 3073 csbeq2d 3074 csbvarg 3077 nfcsb1d 3080 nfcsbd 3084 nfcsbw 3085 csbie2g 3099 csbnestgf 3101 cbvralcsf 3111 cbvrexcsf 3112 cbvreucsf 3113 cbvrabcsf 3114 csbprc 3460 csbexga 4117 bdccsb 13895 |
Copyright terms: Public domain | W3C validator |