Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-csb | GIF version |
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2950, to prevent ambiguity. Theorem sbcel1g 3063 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3073 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | csb 3044 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1342 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2136 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wsbc 2950 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2151 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1343 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Colors of variables: wff set class |
This definition is referenced by: csb2 3046 csbeq1 3047 cbvcsbw 3048 cbvcsb 3049 csbid 3052 csbco 3054 csbcow 3055 csbtt 3056 sbcel12g 3059 sbceqg 3060 csbeq2 3068 csbeq2d 3069 csbvarg 3072 nfcsb1d 3075 nfcsbd 3079 nfcsbw 3080 csbie2g 3094 csbnestgf 3096 cbvralcsf 3106 cbvrexcsf 3107 cbvreucsf 3108 cbvrabcsf 3109 csbprc 3453 csbexga 4109 bdccsb 13702 |
Copyright terms: Public domain | W3C validator |