| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-csb | GIF version | ||
| Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3028, to prevent ambiguity. Theorem sbcel1g 3143 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3153 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | csb 3124 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1394 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2200 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wsbc 3028 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2215 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1395 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Colors of variables: wff set class |
| This definition is referenced by: csb2 3126 csbeq1 3127 cbvcsbw 3128 cbvcsb 3129 csbid 3132 csbco 3134 csbcow 3135 csbtt 3136 sbcel12g 3139 sbceqg 3140 csbeq2 3148 csbeq2d 3149 csbvarg 3152 nfcsb1d 3155 nfcsbd 3160 nfcsbw 3161 csbie2g 3175 csbnestgf 3177 cbvralcsf 3187 cbvrexcsf 3188 cbvreucsf 3189 cbvrabcsf 3190 csbprc 3537 csbexga 4211 bdccsb 16153 |
| Copyright terms: Public domain | W3C validator |