| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-csb | GIF version | ||
| Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3000, to prevent ambiguity. Theorem sbcel1g 3114 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3124 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | csb 3095 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1372 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2177 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wsbc 3000 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2192 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1373 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Colors of variables: wff set class |
| This definition is referenced by: csb2 3097 csbeq1 3098 cbvcsbw 3099 cbvcsb 3100 csbid 3103 csbco 3105 csbcow 3106 csbtt 3107 sbcel12g 3110 sbceqg 3111 csbeq2 3119 csbeq2d 3120 csbvarg 3123 nfcsb1d 3126 nfcsbd 3131 nfcsbw 3132 csbie2g 3146 csbnestgf 3148 cbvralcsf 3158 cbvrexcsf 3159 cbvreucsf 3160 cbvrabcsf 3161 csbprc 3508 csbexga 4177 bdccsb 15910 |
| Copyright terms: Public domain | W3C validator |