![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-csb | GIF version |
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2962, to prevent ambiguity. Theorem sbcel1g 3076 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3086 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | csb 3057 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1352 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2148 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wsbc 2962 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2163 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1353 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Colors of variables: wff set class |
This definition is referenced by: csb2 3059 csbeq1 3060 cbvcsbw 3061 cbvcsb 3062 csbid 3065 csbco 3067 csbcow 3068 csbtt 3069 sbcel12g 3072 sbceqg 3073 csbeq2 3081 csbeq2d 3082 csbvarg 3085 nfcsb1d 3088 nfcsbd 3092 nfcsbw 3093 csbie2g 3107 csbnestgf 3109 cbvralcsf 3119 cbvrexcsf 3120 cbvreucsf 3121 cbvrabcsf 3122 csbprc 3468 csbexga 4131 bdccsb 14582 |
Copyright terms: Public domain | W3C validator |