Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrabexg GIF version

Theorem bdrabexg 15916
Description: Bounded version of rabexg 4191. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdrabexg.bd BOUNDED 𝜑
bdrabexg.bdc BOUNDED 𝐴
Assertion
Ref Expression
bdrabexg (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem bdrabexg
StepHypRef Expression
1 ssrab2 3279 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 bdrabexg.bdc . . . 4 BOUNDED 𝐴
3 bdrabexg.bd . . . 4 BOUNDED 𝜑
42, 3bdcrab 15862 . . 3 BOUNDED {𝑥𝐴𝜑}
54bdssexg 15914 . 2 (({𝑥𝐴𝜑} ⊆ 𝐴𝐴𝑉) → {𝑥𝐴𝜑} ∈ V)
61, 5mpan 424 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  {crab 2489  Vcvv 2773  wss 3167  BOUNDED wbd 15822  BOUNDED wbdc 15850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-bd0 15823  ax-bdan 15825  ax-bdsb 15832  ax-bdsep 15894
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-in 3173  df-ss 3180  df-bdc 15851
This theorem is referenced by:  bj-inex  15917
  Copyright terms: Public domain W3C validator