Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdrabexg | GIF version |
Description: Bounded version of rabexg 4124. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdrabexg.bd | ⊢ BOUNDED 𝜑 |
bdrabexg.bdc | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdrabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3226 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | bdrabexg.bdc | . . . 4 ⊢ BOUNDED 𝐴 | |
3 | bdrabexg.bd | . . . 4 ⊢ BOUNDED 𝜑 | |
4 | 2, 3 | bdcrab 13694 | . . 3 ⊢ BOUNDED {𝑥 ∈ 𝐴 ∣ 𝜑} |
5 | 4 | bdssexg 13746 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
6 | 1, 5 | mpan 421 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 {crab 2447 Vcvv 2725 ⊆ wss 3115 BOUNDED wbd 13654 BOUNDED wbdc 13682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bd0 13655 ax-bdan 13657 ax-bdsb 13664 ax-bdsep 13726 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rab 2452 df-v 2727 df-in 3121 df-ss 3128 df-bdc 13683 |
This theorem is referenced by: bj-inex 13749 |
Copyright terms: Public domain | W3C validator |