| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdrabexg | GIF version | ||
| Description: Bounded version of rabexg 4177. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdrabexg.bd | ⊢ BOUNDED 𝜑 |
| bdrabexg.bdc | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdrabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3269 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | bdrabexg.bdc | . . . 4 ⊢ BOUNDED 𝐴 | |
| 3 | bdrabexg.bd | . . . 4 ⊢ BOUNDED 𝜑 | |
| 4 | 2, 3 | bdcrab 15582 | . . 3 ⊢ BOUNDED {𝑥 ∈ 𝐴 ∣ 𝜑} |
| 5 | 4 | bdssexg 15634 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| 6 | 1, 5 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 {crab 2479 Vcvv 2763 ⊆ wss 3157 BOUNDED wbd 15542 BOUNDED wbdc 15570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15543 ax-bdan 15545 ax-bdsb 15552 ax-bdsep 15614 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 df-bdc 15571 |
| This theorem is referenced by: bj-inex 15637 |
| Copyright terms: Public domain | W3C validator |