![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdrabexg | GIF version |
Description: Bounded version of rabexg 3980. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdrabexg.bd | ⊢ BOUNDED 𝜑 |
bdrabexg.bdc | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdrabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3106 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | bdrabexg.bdc | . . . 4 ⊢ BOUNDED 𝐴 | |
3 | bdrabexg.bd | . . . 4 ⊢ BOUNDED 𝜑 | |
4 | 2, 3 | bdcrab 11626 | . . 3 ⊢ BOUNDED {𝑥 ∈ 𝐴 ∣ 𝜑} |
5 | 4 | bdssexg 11678 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
6 | 1, 5 | mpan 415 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1438 {crab 2363 Vcvv 2619 ⊆ wss 2999 BOUNDED wbd 11586 BOUNDED wbdc 11614 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-bd0 11587 ax-bdan 11589 ax-bdsb 11596 ax-bdsep 11658 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rab 2368 df-v 2621 df-in 3005 df-ss 3012 df-bdc 11615 |
This theorem is referenced by: bj-inex 11681 |
Copyright terms: Public domain | W3C validator |