| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdrabexg | GIF version | ||
| Description: Bounded version of rabexg 4191. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdrabexg.bd | ⊢ BOUNDED 𝜑 |
| bdrabexg.bdc | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdrabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3279 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | bdrabexg.bdc | . . . 4 ⊢ BOUNDED 𝐴 | |
| 3 | bdrabexg.bd | . . . 4 ⊢ BOUNDED 𝜑 | |
| 4 | 2, 3 | bdcrab 15862 | . . 3 ⊢ BOUNDED {𝑥 ∈ 𝐴 ∣ 𝜑} |
| 5 | 4 | bdssexg 15914 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| 6 | 1, 5 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 {crab 2489 Vcvv 2773 ⊆ wss 3167 BOUNDED wbd 15822 BOUNDED wbdc 15850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-bd0 15823 ax-bdan 15825 ax-bdsb 15832 ax-bdsep 15894 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-in 3173 df-ss 3180 df-bdc 15851 |
| This theorem is referenced by: bj-inex 15917 |
| Copyright terms: Public domain | W3C validator |