Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrabexg GIF version

Theorem bdrabexg 15636
Description: Bounded version of rabexg 4177. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdrabexg.bd BOUNDED 𝜑
bdrabexg.bdc BOUNDED 𝐴
Assertion
Ref Expression
bdrabexg (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem bdrabexg
StepHypRef Expression
1 ssrab2 3269 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
2 bdrabexg.bdc . . . 4 BOUNDED 𝐴
3 bdrabexg.bd . . . 4 BOUNDED 𝜑
42, 3bdcrab 15582 . . 3 BOUNDED {𝑥𝐴𝜑}
54bdssexg 15634 . 2 (({𝑥𝐴𝜑} ⊆ 𝐴𝐴𝑉) → {𝑥𝐴𝜑} ∈ V)
61, 5mpan 424 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  {crab 2479  Vcvv 2763  wss 3157  BOUNDED wbd 15542  BOUNDED wbdc 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15543  ax-bdan 15545  ax-bdsb 15552  ax-bdsep 15614
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-bdc 15571
This theorem is referenced by:  bj-inex  15637
  Copyright terms: Public domain W3C validator