| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdrabexg | GIF version | ||
| Description: Bounded version of rabexg 4226. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdrabexg.bd | ⊢ BOUNDED 𝜑 |
| bdrabexg.bdc | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdrabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3309 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | bdrabexg.bdc | . . . 4 ⊢ BOUNDED 𝐴 | |
| 3 | bdrabexg.bd | . . . 4 ⊢ BOUNDED 𝜑 | |
| 4 | 2, 3 | bdcrab 16145 | . . 3 ⊢ BOUNDED {𝑥 ∈ 𝐴 ∣ 𝜑} |
| 5 | 4 | bdssexg 16197 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| 6 | 1, 5 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 {crab 2512 Vcvv 2799 ⊆ wss 3197 BOUNDED wbd 16105 BOUNDED wbdc 16133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-bd0 16106 ax-bdan 16108 ax-bdsb 16115 ax-bdsep 16177 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 df-bdc 16134 |
| This theorem is referenced by: bj-inex 16200 |
| Copyright terms: Public domain | W3C validator |