Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdrabexg | GIF version |
Description: Bounded version of rabexg 4141. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdrabexg.bd | ⊢ BOUNDED 𝜑 |
bdrabexg.bdc | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdrabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3238 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | bdrabexg.bdc | . . . 4 ⊢ BOUNDED 𝐴 | |
3 | bdrabexg.bd | . . . 4 ⊢ BOUNDED 𝜑 | |
4 | 2, 3 | bdcrab 14164 | . . 3 ⊢ BOUNDED {𝑥 ∈ 𝐴 ∣ 𝜑} |
5 | 4 | bdssexg 14216 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
6 | 1, 5 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 {crab 2457 Vcvv 2735 ⊆ wss 3127 BOUNDED wbd 14124 BOUNDED wbdc 14152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-bd0 14125 ax-bdan 14127 ax-bdsb 14134 ax-bdsep 14196 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-v 2737 df-in 3133 df-ss 3140 df-bdc 14153 |
This theorem is referenced by: bj-inex 14219 |
Copyright terms: Public domain | W3C validator |