ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoi GIF version

Theorem rmoi 3083
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
rmoi.b (𝑥 = 𝐵 → (𝜑𝜓))
rmoi.c (𝑥 = 𝐶 → (𝜑𝜒))
Assertion
Ref Expression
rmoi ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓) ∧ (𝐶𝐴𝜒)) → 𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmoi
StepHypRef Expression
1 rmoi.b . . 3 (𝑥 = 𝐵 → (𝜑𝜓))
2 rmoi.c . . 3 (𝑥 = 𝐶 → (𝜑𝜒))
31, 2rmob 3082 . 2 ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
43biimp3ar 1357 1 ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓) ∧ (𝐶𝐴𝜒)) → 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  ∃*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rmo 2483  df-v 2765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator