ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoi GIF version

Theorem rmoi 2968
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
rmoi.b (𝑥 = 𝐵 → (𝜑𝜓))
rmoi.c (𝑥 = 𝐶 → (𝜑𝜒))
Assertion
Ref Expression
rmoi ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓) ∧ (𝐶𝐴𝜒)) → 𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmoi
StepHypRef Expression
1 rmoi.b . . 3 (𝑥 = 𝐵 → (𝜑𝜓))
2 rmoi.c . . 3 (𝑥 = 𝐶 → (𝜑𝜒))
31, 2rmob 2967 . 2 ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
43biimp3ar 1305 1 ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓) ∧ (𝐶𝐴𝜒)) → 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 943   = wceq 1312  wcel 1461  ∃*wrmo 2391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-rmo 2396  df-v 2657
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator