![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rmoi | GIF version |
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmoi.b | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
rmoi.c | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
rmoi | ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓) ∧ (𝐶 ∈ 𝐴 ∧ 𝜒)) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoi.b | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
2 | rmoi.c | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | rmob 3057 | . 2 ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → (𝐵 = 𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝜒))) |
4 | 3 | biimp3ar 1346 | 1 ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓) ∧ (𝐶 ∈ 𝐴 ∧ 𝜒)) → 𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∃*wrmo 2458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rmo 2463 df-v 2741 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |