| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > brelrng | GIF version | ||
| Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.) | 
| Ref | Expression | 
|---|---|
| brelrng | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brcnvg 4847 | . . . . 5 ⊢ ((𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹) → (𝐵◡𝐶𝐴 ↔ 𝐴𝐶𝐵)) | |
| 2 | 1 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺) → (𝐵◡𝐶𝐴 ↔ 𝐴𝐶𝐵)) | 
| 3 | 2 | biimp3ar 1357 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵◡𝐶𝐴) | 
| 4 | breldmg 4872 | . . . 4 ⊢ ((𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹 ∧ 𝐵◡𝐶𝐴) → 𝐵 ∈ dom ◡𝐶) | |
| 5 | 4 | 3com12 1209 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐵◡𝐶𝐴) → 𝐵 ∈ dom ◡𝐶) | 
| 6 | 3, 5 | syld3an3 1294 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ dom ◡𝐶) | 
| 7 | df-rn 4674 | . 2 ⊢ ran 𝐶 = dom ◡𝐶 | |
| 8 | 6, 7 | eleqtrrdi 2290 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 ∈ wcel 2167 class class class wbr 4033 ◡ccnv 4662 dom cdm 4663 ran crn 4664 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 | 
| This theorem is referenced by: opelrng 4898 brelrn 4899 relelrn 4902 fvssunirng 5573 shftfvalg 10983 ovshftex 10984 shftfval 10986 | 
| Copyright terms: Public domain | W3C validator |