ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brelrng GIF version

Theorem brelrng 4894
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
Assertion
Ref Expression
brelrng ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)

Proof of Theorem brelrng
StepHypRef Expression
1 brcnvg 4844 . . . . 5 ((𝐵𝐺𝐴𝐹) → (𝐵𝐶𝐴𝐴𝐶𝐵))
21ancoms 268 . . . 4 ((𝐴𝐹𝐵𝐺) → (𝐵𝐶𝐴𝐴𝐶𝐵))
32biimp3ar 1357 . . 3 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵𝐶𝐴)
4 breldmg 4869 . . . 4 ((𝐵𝐺𝐴𝐹𝐵𝐶𝐴) → 𝐵 ∈ dom 𝐶)
543com12 1209 . . 3 ((𝐴𝐹𝐵𝐺𝐵𝐶𝐴) → 𝐵 ∈ dom 𝐶)
63, 5syld3an3 1294 . 2 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ dom 𝐶)
7 df-rn 4671 . 2 ran 𝐶 = dom 𝐶
86, 7eleqtrrdi 2287 1 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980  wcel 2164   class class class wbr 4030  ccnv 4659  dom cdm 4660  ran crn 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-cnv 4668  df-dm 4670  df-rn 4671
This theorem is referenced by:  opelrng  4895  brelrn  4896  relelrn  4899  fvssunirng  5570  shftfvalg  10965  ovshftex  10966  shftfval  10968
  Copyright terms: Public domain W3C validator