Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brelrng | GIF version |
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.) |
Ref | Expression |
---|---|
brelrng | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvg 4785 | . . . . 5 ⊢ ((𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹) → (𝐵◡𝐶𝐴 ↔ 𝐴𝐶𝐵)) | |
2 | 1 | ancoms 266 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺) → (𝐵◡𝐶𝐴 ↔ 𝐴𝐶𝐵)) |
3 | 2 | biimp3ar 1336 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵◡𝐶𝐴) |
4 | breldmg 4810 | . . . 4 ⊢ ((𝐵 ∈ 𝐺 ∧ 𝐴 ∈ 𝐹 ∧ 𝐵◡𝐶𝐴) → 𝐵 ∈ dom ◡𝐶) | |
5 | 4 | 3com12 1197 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐵◡𝐶𝐴) → 𝐵 ∈ dom ◡𝐶) |
6 | 3, 5 | syld3an3 1273 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ dom ◡𝐶) |
7 | df-rn 4615 | . 2 ⊢ ran 𝐶 = dom ◡𝐶 | |
8 | 6, 7 | eleqtrrdi 2260 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3982 ◡ccnv 4603 dom cdm 4604 ran crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: opelrng 4836 brelrn 4837 relelrn 4840 fvssunirng 5501 shftfvalg 10760 ovshftex 10761 shftfval 10763 |
Copyright terms: Public domain | W3C validator |