| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basgen2 | GIF version | ||
| Description: Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| basgen2 | ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (topGen‘𝐵) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 3213 | . . . 4 ⊢ (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵)) | |
| 2 | ssexg 4223 | . . . . . . 7 ⊢ ((𝐵 ⊆ 𝐽 ∧ 𝐽 ∈ Top) → 𝐵 ∈ V) | |
| 3 | 2 | ancoms 268 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → 𝐵 ∈ V) |
| 4 | eltg2b 14736 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) | |
| 5 | 3, 4 | syl 14 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
| 6 | 5 | ralbidv 2530 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
| 7 | 1, 6 | bitrid 192 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
| 8 | 7 | biimp3ar 1380 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → 𝐽 ⊆ (topGen‘𝐵)) |
| 9 | basgen 14762 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = 𝐽) | |
| 10 | 8, 9 | syld3an3 1316 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (topGen‘𝐵) = 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 Vcvv 2799 ⊆ wss 3197 ‘cfv 5318 topGenctg 13295 Topctop 14679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-topgen 13301 df-top 14680 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |