![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > basgen2 | GIF version |
Description: Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
basgen2 | ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (topGen‘𝐵) = 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3169 | . . . 4 ⊢ (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵)) | |
2 | ssexg 4168 | . . . . . . 7 ⊢ ((𝐵 ⊆ 𝐽 ∧ 𝐽 ∈ Top) → 𝐵 ∈ V) | |
3 | 2 | ancoms 268 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → 𝐵 ∈ V) |
4 | eltg2b 14222 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
6 | 5 | ralbidv 2494 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
7 | 1, 6 | bitrid 192 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
8 | 7 | biimp3ar 1357 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → 𝐽 ⊆ (topGen‘𝐵)) |
9 | basgen 14248 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = 𝐽) | |
10 | 8, 9 | syld3an3 1294 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (topGen‘𝐵) = 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 Vcvv 2760 ⊆ wss 3153 ‘cfv 5254 topGenctg 12865 Topctop 14165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-topgen 12871 df-top 14166 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |