ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basgen2 GIF version

Theorem basgen2 13584
Description: Given a topology 𝐽, show that a subset 𝐡 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
basgen2 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)) β†’ (topGenβ€˜π΅) = 𝐽)
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐡   π‘₯,𝐽,𝑦,𝑧

Proof of Theorem basgen2
StepHypRef Expression
1 dfss3 3146 . . . 4 (𝐽 βŠ† (topGenβ€˜π΅) ↔ βˆ€π‘₯ ∈ 𝐽 π‘₯ ∈ (topGenβ€˜π΅))
2 ssexg 4143 . . . . . . 7 ((𝐡 βŠ† 𝐽 ∧ 𝐽 ∈ Top) β†’ 𝐡 ∈ V)
32ancoms 268 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽) β†’ 𝐡 ∈ V)
4 eltg2b 13557 . . . . . 6 (𝐡 ∈ V β†’ (π‘₯ ∈ (topGenβ€˜π΅) ↔ βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)))
53, 4syl 14 . . . . 5 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽) β†’ (π‘₯ ∈ (topGenβ€˜π΅) ↔ βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)))
65ralbidv 2477 . . . 4 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽) β†’ (βˆ€π‘₯ ∈ 𝐽 π‘₯ ∈ (topGenβ€˜π΅) ↔ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)))
71, 6bitrid 192 . . 3 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽) β†’ (𝐽 βŠ† (topGenβ€˜π΅) ↔ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)))
87biimp3ar 1346 . 2 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)) β†’ 𝐽 βŠ† (topGenβ€˜π΅))
9 basgen 13583 . 2 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ 𝐽 βŠ† (topGenβ€˜π΅)) β†’ (topGenβ€˜π΅) = 𝐽)
108, 9syld3an3 1283 1 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽 ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘§ ∈ 𝐡 (𝑦 ∈ 𝑧 ∧ 𝑧 βŠ† π‘₯)) β†’ (topGenβ€˜π΅) = 𝐽)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  Vcvv 2738   βŠ† wss 3130  β€˜cfv 5217  topGenctg 12703  Topctop 13500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-topgen 12709  df-top 13501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator