ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qredeu GIF version

Theorem qredeu 12265
Description: Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeu (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem qredeu
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 9345 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
2 gcddvds 12130 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ∧ (𝑧 gcd 𝑛) ∥ 𝑛))
32simpld 112 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∥ 𝑧)
41, 3sylan2 286 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∥ 𝑧)
5 gcdcl 12133 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∈ ℕ0)
61, 5sylan2 286 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℕ0)
76nn0zd 9446 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℤ)
8 simpl 109 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℤ)
91adantl 277 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
10 nnne0 9018 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
1110neneqd 2388 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
1211intnand 932 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ¬ (𝑧 = 0 ∧ 𝑛 = 0))
1312adantl 277 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ¬ (𝑧 = 0 ∧ 𝑛 = 0))
14 gcdn0cl 12129 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ (𝑧 = 0 ∧ 𝑛 = 0)) → (𝑧 gcd 𝑛) ∈ ℕ)
158, 9, 13, 14syl21anc 1248 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℕ)
1615nnne0d 9035 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ≠ 0)
17 dvdsval2 11955 . . . . . . . . . 10 (((𝑧 gcd 𝑛) ∈ ℤ ∧ (𝑧 gcd 𝑛) ≠ 0 ∧ 𝑧 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ↔ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ))
187, 16, 8, 17syl3anc 1249 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ↔ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ))
194, 18mpbid 147 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ)
20193adant3 1019 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ)
212simprd 114 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∥ 𝑛)
221, 21sylan2 286 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∥ 𝑛)
23 dvdsval2 11955 . . . . . . . . . . . 12 (((𝑧 gcd 𝑛) ∈ ℤ ∧ (𝑧 gcd 𝑛) ≠ 0 ∧ 𝑛 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑛 ↔ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ))
247, 16, 9, 23syl3anc 1249 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) ∥ 𝑛 ↔ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ))
2522, 24mpbid 147 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ)
26 nnre 8997 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
2726adantl 277 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
286nn0red 9303 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℝ)
29 nngt0 9015 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < 𝑛)
3029adantl 277 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < 𝑛)
3115nngt0d 9034 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < (𝑧 gcd 𝑛))
3227, 28, 30, 31divgt0d 8962 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < (𝑛 / (𝑧 gcd 𝑛)))
3325, 32jca 306 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
34333adant3 1019 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
35 elnnz 9336 . . . . . . . 8 ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℕ ↔ ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
3634, 35sylibr 134 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℕ)
37 opelxpi 4695 . . . . . . 7 (((𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℕ) → ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ ∈ (ℤ × ℕ))
3820, 36, 37syl2anc 411 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ ∈ (ℤ × ℕ))
39 fveq2 5558 . . . . . . . . . 10 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (1st𝑥) = (1st ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩))
40 simp1 999 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → 𝑧 ∈ ℤ)
41153adant3 1019 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑧 gcd 𝑛) ∈ ℕ)
42 znq 9698 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ (𝑧 gcd 𝑛) ∈ ℕ) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℚ)
4340, 41, 42syl2anc 411 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℚ)
4493adant3 1019 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → 𝑛 ∈ ℤ)
45 znq 9698 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ (𝑧 gcd 𝑛) ∈ ℕ) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℚ)
4644, 41, 45syl2anc 411 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℚ)
47 op1stg 6208 . . . . . . . . . . 11 (((𝑧 / (𝑧 gcd 𝑛)) ∈ ℚ ∧ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℚ) → (1st ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) = (𝑧 / (𝑧 gcd 𝑛)))
4843, 46, 47syl2anc 411 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (1st ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) = (𝑧 / (𝑧 gcd 𝑛)))
4939, 48sylan9eqr 2251 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → (1st𝑥) = (𝑧 / (𝑧 gcd 𝑛)))
50 fveq2 5558 . . . . . . . . . 10 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (2nd𝑥) = (2nd ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩))
51 op2ndg 6209 . . . . . . . . . . 11 (((𝑧 / (𝑧 gcd 𝑛)) ∈ ℚ ∧ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℚ) → (2nd ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) = (𝑛 / (𝑧 gcd 𝑛)))
5243, 46, 51syl2anc 411 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (2nd ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) = (𝑛 / (𝑧 gcd 𝑛)))
5350, 52sylan9eqr 2251 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → (2nd𝑥) = (𝑛 / (𝑧 gcd 𝑛)))
5449, 53oveq12d 5940 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → ((1st𝑥) gcd (2nd𝑥)) = ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))))
5554eqeq1d 2205 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → (((1st𝑥) gcd (2nd𝑥)) = 1 ↔ ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1))
5649, 53oveq12d 5940 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → ((1st𝑥) / (2nd𝑥)) = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))
5756eqeq2d 2208 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → (𝐴 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛)))))
5855, 57anbi12d 473 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1 ∧ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))))
5919, 25gcdcld 12135 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) ∈ ℕ0)
6059nn0cnd 9304 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) ∈ ℂ)
61 1cnd 8042 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℂ)
626nn0cnd 9304 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℂ)
6315nnap0d 9036 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) # 0)
6462mulridd 8043 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · 1) = (𝑧 gcd 𝑛))
65 zcn 9331 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
6665adantr 276 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℂ)
6766, 62, 63divcanap2d 8819 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) = 𝑧)
68 nncn 8998 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
6968adantl 277 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
7069, 62, 63divcanap2d 8819 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛))) = 𝑛)
7167, 70oveq12d 5940 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = (𝑧 gcd 𝑛))
72 mulgcd 12183 . . . . . . . . . . 11 (((𝑧 gcd 𝑛) ∈ ℕ0 ∧ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))))
736, 19, 25, 72syl3anc 1249 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))))
7464, 71, 733eqtr2rd 2236 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · 1))
7560, 61, 62, 63, 74mulcanapad 8690 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1)
76753adant3 1019 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1)
77 nnap0 9019 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 # 0)
7877adantl 277 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 # 0)
7966, 69, 62, 78, 63divcanap7d 8846 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))) = (𝑧 / 𝑛))
8079eqeq2d 2208 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))) ↔ 𝐴 = (𝑧 / 𝑛)))
8180biimp3ar 1357 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))
8276, 81jca 306 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1 ∧ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛)))))
8338, 58, 82rspcedvd 2874 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
84 elxp6 6227 . . . . . . 7 (𝑥 ∈ (ℤ × ℕ) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)))
85 elxp6 6227 . . . . . . 7 (𝑦 ∈ (ℤ × ℕ) ↔ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)))
86 simprl 529 . . . . . . . . . . . 12 ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℤ)
8786ad2antrr 488 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (1st𝑥) ∈ ℤ)
88 simprr 531 . . . . . . . . . . . 12 ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℕ)
8988ad2antrr 488 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (2nd𝑥) ∈ ℕ)
90 simprll 537 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) gcd (2nd𝑥)) = 1)
91 simprl 529 . . . . . . . . . . . 12 ((𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)) → (1st𝑦) ∈ ℤ)
9291ad2antlr 489 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (1st𝑦) ∈ ℤ)
93 simprr 531 . . . . . . . . . . . 12 ((𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)) → (2nd𝑦) ∈ ℕ)
9493ad2antlr 489 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (2nd𝑦) ∈ ℕ)
95 simprrl 539 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑦) gcd (2nd𝑦)) = 1)
96 simprlr 538 . . . . . . . . . . . 12 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝐴 = ((1st𝑥) / (2nd𝑥)))
97 simprrr 540 . . . . . . . . . . . 12 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝐴 = ((1st𝑦) / (2nd𝑦)))
9896, 97eqtr3d 2231 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦)))
99 qredeq 12264 . . . . . . . . . . 11 ((((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ ∧ ((1st𝑥) gcd (2nd𝑥)) = 1) ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ ∧ ((1st𝑦) gcd (2nd𝑦)) = 1) ∧ ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦))) → ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
10087, 89, 90, 92, 94, 95, 98, 99syl331anc 1274 . . . . . . . . . 10 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
101 vex 2766 . . . . . . . . . . . 12 𝑥 ∈ V
102 1stexg 6225 . . . . . . . . . . . 12 (𝑥 ∈ V → (1st𝑥) ∈ V)
103101, 102ax-mp 5 . . . . . . . . . . 11 (1st𝑥) ∈ V
104 2ndexg 6226 . . . . . . . . . . . 12 (𝑥 ∈ V → (2nd𝑥) ∈ V)
105101, 104ax-mp 5 . . . . . . . . . . 11 (2nd𝑥) ∈ V
106103, 105opth 4270 . . . . . . . . . 10 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩ ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
107100, 106sylibr 134 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
108 simplll 533 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
109 simplrl 535 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
110107, 108, 1093eqtr4d 2239 . . . . . . . 8 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑥 = 𝑦)
111110ex 115 . . . . . . 7 (((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) → (((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))
11284, 85, 111syl2anb 291 . . . . . 6 ((𝑥 ∈ (ℤ × ℕ) ∧ 𝑦 ∈ (ℤ × ℕ)) → (((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))
113112rgen2a 2551 . . . . 5 𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)
11483, 113jctir 313 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
1151143expia 1207 . . 3 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝐴 = (𝑧 / 𝑛) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))))
116115rexlimivv 2620 . 2 (∃𝑧 ∈ ℤ ∃𝑛 ∈ ℕ 𝐴 = (𝑧 / 𝑛) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
117 elq 9696 . 2 (𝐴 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑛 ∈ ℕ 𝐴 = (𝑧 / 𝑛))
118 fveq2 5558 . . . . . 6 (𝑥 = 𝑦 → (1st𝑥) = (1st𝑦))
119 fveq2 5558 . . . . . 6 (𝑥 = 𝑦 → (2nd𝑥) = (2nd𝑦))
120118, 119oveq12d 5940 . . . . 5 (𝑥 = 𝑦 → ((1st𝑥) gcd (2nd𝑥)) = ((1st𝑦) gcd (2nd𝑦)))
121120eqeq1d 2205 . . . 4 (𝑥 = 𝑦 → (((1st𝑥) gcd (2nd𝑥)) = 1 ↔ ((1st𝑦) gcd (2nd𝑦)) = 1))
122118, 119oveq12d 5940 . . . . 5 (𝑥 = 𝑦 → ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦)))
123122eqeq2d 2208 . . . 4 (𝑥 = 𝑦 → (𝐴 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((1st𝑦) / (2nd𝑦))))
124121, 123anbi12d 473 . . 3 (𝑥 = 𝑦 → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))))
125124reu4 2958 . 2 (∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
126116, 117, 1253imtr4i 201 1 (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  ∃!wreu 2477  Vcvv 2763  cop 3625   class class class wbr 4033   × cxp 4661  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  cc 7877  cr 7878  0cc0 7879  1c1 7880   · cmul 7884   < clt 8061   # cap 8608   / cdiv 8699  cn 8990  0cn0 9249  cz 9326  cq 9693  cdvds 11952   gcd cgcd 12120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121
This theorem is referenced by:  qnumdencl  12355  qnumdenbi  12360
  Copyright terms: Public domain W3C validator