ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qredeu GIF version

Theorem qredeu 12096
Description: Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeu (๐ด โˆˆ โ„š โ†’ โˆƒ!๐‘ฅ โˆˆ (โ„ค ร— โ„•)(((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))))
Distinct variable group:   ๐‘ฅ,๐ด

Proof of Theorem qredeu
Dummy variables ๐‘› ๐‘ฆ ๐‘ง are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 9271 . . . . . . . . . 10 (๐‘› โˆˆ โ„• โ†’ ๐‘› โˆˆ โ„ค)
2 gcddvds 11963 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„ค) โ†’ ((๐‘ง gcd ๐‘›) โˆฅ ๐‘ง โˆง (๐‘ง gcd ๐‘›) โˆฅ ๐‘›))
32simpld 112 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„ค) โ†’ (๐‘ง gcd ๐‘›) โˆฅ ๐‘ง)
41, 3sylan2 286 . . . . . . . . 9 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘ง gcd ๐‘›) โˆฅ ๐‘ง)
5 gcdcl 11966 . . . . . . . . . . . 12 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„ค) โ†’ (๐‘ง gcd ๐‘›) โˆˆ โ„•0)
61, 5sylan2 286 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘ง gcd ๐‘›) โˆˆ โ„•0)
76nn0zd 9372 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘ง gcd ๐‘›) โˆˆ โ„ค)
8 simpl 109 . . . . . . . . . . . 12 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ๐‘ง โˆˆ โ„ค)
91adantl 277 . . . . . . . . . . . 12 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ๐‘› โˆˆ โ„ค)
10 nnne0 8946 . . . . . . . . . . . . . . 15 (๐‘› โˆˆ โ„• โ†’ ๐‘› โ‰  0)
1110neneqd 2368 . . . . . . . . . . . . . 14 (๐‘› โˆˆ โ„• โ†’ ยฌ ๐‘› = 0)
1211intnand 931 . . . . . . . . . . . . 13 (๐‘› โˆˆ โ„• โ†’ ยฌ (๐‘ง = 0 โˆง ๐‘› = 0))
1312adantl 277 . . . . . . . . . . . 12 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ยฌ (๐‘ง = 0 โˆง ๐‘› = 0))
14 gcdn0cl 11962 . . . . . . . . . . . 12 (((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„ค) โˆง ยฌ (๐‘ง = 0 โˆง ๐‘› = 0)) โ†’ (๐‘ง gcd ๐‘›) โˆˆ โ„•)
158, 9, 13, 14syl21anc 1237 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘ง gcd ๐‘›) โˆˆ โ„•)
1615nnne0d 8963 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘ง gcd ๐‘›) โ‰  0)
17 dvdsval2 11796 . . . . . . . . . 10 (((๐‘ง gcd ๐‘›) โˆˆ โ„ค โˆง (๐‘ง gcd ๐‘›) โ‰  0 โˆง ๐‘ง โˆˆ โ„ค) โ†’ ((๐‘ง gcd ๐‘›) โˆฅ ๐‘ง โ†” (๐‘ง / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค))
187, 16, 8, 17syl3anc 1238 . . . . . . . . 9 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ((๐‘ง gcd ๐‘›) โˆฅ ๐‘ง โ†” (๐‘ง / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค))
194, 18mpbid 147 . . . . . . . 8 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘ง / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค)
20193adant3 1017 . . . . . . 7 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ (๐‘ง / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค)
212simprd 114 . . . . . . . . . . . 12 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„ค) โ†’ (๐‘ง gcd ๐‘›) โˆฅ ๐‘›)
221, 21sylan2 286 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘ง gcd ๐‘›) โˆฅ ๐‘›)
23 dvdsval2 11796 . . . . . . . . . . . 12 (((๐‘ง gcd ๐‘›) โˆˆ โ„ค โˆง (๐‘ง gcd ๐‘›) โ‰  0 โˆง ๐‘› โˆˆ โ„ค) โ†’ ((๐‘ง gcd ๐‘›) โˆฅ ๐‘› โ†” (๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค))
247, 16, 9, 23syl3anc 1238 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ((๐‘ง gcd ๐‘›) โˆฅ ๐‘› โ†” (๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค))
2522, 24mpbid 147 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค)
26 nnre 8925 . . . . . . . . . . . 12 (๐‘› โˆˆ โ„• โ†’ ๐‘› โˆˆ โ„)
2726adantl 277 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ๐‘› โˆˆ โ„)
286nn0red 9229 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘ง gcd ๐‘›) โˆˆ โ„)
29 nngt0 8943 . . . . . . . . . . . 12 (๐‘› โˆˆ โ„• โ†’ 0 < ๐‘›)
3029adantl 277 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ 0 < ๐‘›)
3115nngt0d 8962 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ 0 < (๐‘ง gcd ๐‘›))
3227, 28, 30, 31divgt0d 8891 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ 0 < (๐‘› / (๐‘ง gcd ๐‘›)))
3325, 32jca 306 . . . . . . . . 9 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ((๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค โˆง 0 < (๐‘› / (๐‘ง gcd ๐‘›))))
34333adant3 1017 . . . . . . . 8 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ ((๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค โˆง 0 < (๐‘› / (๐‘ง gcd ๐‘›))))
35 elnnz 9262 . . . . . . . 8 ((๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„• โ†” ((๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค โˆง 0 < (๐‘› / (๐‘ง gcd ๐‘›))))
3634, 35sylibr 134 . . . . . . 7 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ (๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„•)
37 opelxpi 4658 . . . . . . 7 (((๐‘ง / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค โˆง (๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„•) โ†’ โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ โˆˆ (โ„ค ร— โ„•))
3820, 36, 37syl2anc 411 . . . . . 6 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ โˆˆ (โ„ค ร— โ„•))
39 fveq2 5515 . . . . . . . . . 10 (๐‘ฅ = โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ โ†’ (1st โ€˜๐‘ฅ) = (1st โ€˜โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ))
40 simp1 997 . . . . . . . . . . . 12 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ ๐‘ง โˆˆ โ„ค)
41153adant3 1017 . . . . . . . . . . . 12 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ (๐‘ง gcd ๐‘›) โˆˆ โ„•)
42 znq 9623 . . . . . . . . . . . 12 ((๐‘ง โˆˆ โ„ค โˆง (๐‘ง gcd ๐‘›) โˆˆ โ„•) โ†’ (๐‘ง / (๐‘ง gcd ๐‘›)) โˆˆ โ„š)
4340, 41, 42syl2anc 411 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ (๐‘ง / (๐‘ง gcd ๐‘›)) โˆˆ โ„š)
4493adant3 1017 . . . . . . . . . . . 12 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ ๐‘› โˆˆ โ„ค)
45 znq 9623 . . . . . . . . . . . 12 ((๐‘› โˆˆ โ„ค โˆง (๐‘ง gcd ๐‘›) โˆˆ โ„•) โ†’ (๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„š)
4644, 41, 45syl2anc 411 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ (๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„š)
47 op1stg 6150 . . . . . . . . . . 11 (((๐‘ง / (๐‘ง gcd ๐‘›)) โˆˆ โ„š โˆง (๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„š) โ†’ (1st โ€˜โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ) = (๐‘ง / (๐‘ง gcd ๐‘›)))
4843, 46, 47syl2anc 411 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ (1st โ€˜โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ) = (๐‘ง / (๐‘ง gcd ๐‘›)))
4939, 48sylan9eqr 2232 . . . . . . . . 9 (((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โˆง ๐‘ฅ = โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ) โ†’ (1st โ€˜๐‘ฅ) = (๐‘ง / (๐‘ง gcd ๐‘›)))
50 fveq2 5515 . . . . . . . . . 10 (๐‘ฅ = โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ โ†’ (2nd โ€˜๐‘ฅ) = (2nd โ€˜โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ))
51 op2ndg 6151 . . . . . . . . . . 11 (((๐‘ง / (๐‘ง gcd ๐‘›)) โˆˆ โ„š โˆง (๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„š) โ†’ (2nd โ€˜โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ) = (๐‘› / (๐‘ง gcd ๐‘›)))
5243, 46, 51syl2anc 411 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ (2nd โ€˜โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ) = (๐‘› / (๐‘ง gcd ๐‘›)))
5350, 52sylan9eqr 2232 . . . . . . . . 9 (((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โˆง ๐‘ฅ = โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ) โ†’ (2nd โ€˜๐‘ฅ) = (๐‘› / (๐‘ง gcd ๐‘›)))
5449, 53oveq12d 5892 . . . . . . . 8 (((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โˆง ๐‘ฅ = โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ) โ†’ ((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = ((๐‘ง / (๐‘ง gcd ๐‘›)) gcd (๐‘› / (๐‘ง gcd ๐‘›))))
5554eqeq1d 2186 . . . . . . 7 (((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โˆง ๐‘ฅ = โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ) โ†’ (((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โ†” ((๐‘ง / (๐‘ง gcd ๐‘›)) gcd (๐‘› / (๐‘ง gcd ๐‘›))) = 1))
5649, 53oveq12d 5892 . . . . . . . 8 (((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โˆง ๐‘ฅ = โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ) โ†’ ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ)) = ((๐‘ง / (๐‘ง gcd ๐‘›)) / (๐‘› / (๐‘ง gcd ๐‘›))))
5756eqeq2d 2189 . . . . . . 7 (((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โˆง ๐‘ฅ = โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ) โ†’ (๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ)) โ†” ๐ด = ((๐‘ง / (๐‘ง gcd ๐‘›)) / (๐‘› / (๐‘ง gcd ๐‘›)))))
5855, 57anbi12d 473 . . . . . 6 (((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โˆง ๐‘ฅ = โŸจ(๐‘ง / (๐‘ง gcd ๐‘›)), (๐‘› / (๐‘ง gcd ๐‘›))โŸฉ) โ†’ ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โ†” (((๐‘ง / (๐‘ง gcd ๐‘›)) gcd (๐‘› / (๐‘ง gcd ๐‘›))) = 1 โˆง ๐ด = ((๐‘ง / (๐‘ง gcd ๐‘›)) / (๐‘› / (๐‘ง gcd ๐‘›))))))
5919, 25gcdcld 11968 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ((๐‘ง / (๐‘ง gcd ๐‘›)) gcd (๐‘› / (๐‘ง gcd ๐‘›))) โˆˆ โ„•0)
6059nn0cnd 9230 . . . . . . . . 9 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ((๐‘ง / (๐‘ง gcd ๐‘›)) gcd (๐‘› / (๐‘ง gcd ๐‘›))) โˆˆ โ„‚)
61 1cnd 7972 . . . . . . . . 9 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ 1 โˆˆ โ„‚)
626nn0cnd 9230 . . . . . . . . 9 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘ง gcd ๐‘›) โˆˆ โ„‚)
6315nnap0d 8964 . . . . . . . . 9 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐‘ง gcd ๐‘›) # 0)
6462mulridd 7973 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ((๐‘ง gcd ๐‘›) ยท 1) = (๐‘ง gcd ๐‘›))
65 zcn 9257 . . . . . . . . . . . . 13 (๐‘ง โˆˆ โ„ค โ†’ ๐‘ง โˆˆ โ„‚)
6665adantr 276 . . . . . . . . . . . 12 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ๐‘ง โˆˆ โ„‚)
6766, 62, 63divcanap2d 8748 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ((๐‘ง gcd ๐‘›) ยท (๐‘ง / (๐‘ง gcd ๐‘›))) = ๐‘ง)
68 nncn 8926 . . . . . . . . . . . . 13 (๐‘› โˆˆ โ„• โ†’ ๐‘› โˆˆ โ„‚)
6968adantl 277 . . . . . . . . . . . 12 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ๐‘› โˆˆ โ„‚)
7069, 62, 63divcanap2d 8748 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ((๐‘ง gcd ๐‘›) ยท (๐‘› / (๐‘ง gcd ๐‘›))) = ๐‘›)
7167, 70oveq12d 5892 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (((๐‘ง gcd ๐‘›) ยท (๐‘ง / (๐‘ง gcd ๐‘›))) gcd ((๐‘ง gcd ๐‘›) ยท (๐‘› / (๐‘ง gcd ๐‘›)))) = (๐‘ง gcd ๐‘›))
72 mulgcd 12016 . . . . . . . . . . 11 (((๐‘ง gcd ๐‘›) โˆˆ โ„•0 โˆง (๐‘ง / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค โˆง (๐‘› / (๐‘ง gcd ๐‘›)) โˆˆ โ„ค) โ†’ (((๐‘ง gcd ๐‘›) ยท (๐‘ง / (๐‘ง gcd ๐‘›))) gcd ((๐‘ง gcd ๐‘›) ยท (๐‘› / (๐‘ง gcd ๐‘›)))) = ((๐‘ง gcd ๐‘›) ยท ((๐‘ง / (๐‘ง gcd ๐‘›)) gcd (๐‘› / (๐‘ง gcd ๐‘›)))))
736, 19, 25, 72syl3anc 1238 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (((๐‘ง gcd ๐‘›) ยท (๐‘ง / (๐‘ง gcd ๐‘›))) gcd ((๐‘ง gcd ๐‘›) ยท (๐‘› / (๐‘ง gcd ๐‘›)))) = ((๐‘ง gcd ๐‘›) ยท ((๐‘ง / (๐‘ง gcd ๐‘›)) gcd (๐‘› / (๐‘ง gcd ๐‘›)))))
7464, 71, 733eqtr2rd 2217 . . . . . . . . 9 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ((๐‘ง gcd ๐‘›) ยท ((๐‘ง / (๐‘ง gcd ๐‘›)) gcd (๐‘› / (๐‘ง gcd ๐‘›)))) = ((๐‘ง gcd ๐‘›) ยท 1))
7560, 61, 62, 63, 74mulcanapad 8619 . . . . . . . 8 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ((๐‘ง / (๐‘ง gcd ๐‘›)) gcd (๐‘› / (๐‘ง gcd ๐‘›))) = 1)
76753adant3 1017 . . . . . . 7 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ ((๐‘ง / (๐‘ง gcd ๐‘›)) gcd (๐‘› / (๐‘ง gcd ๐‘›))) = 1)
77 nnap0 8947 . . . . . . . . . . 11 (๐‘› โˆˆ โ„• โ†’ ๐‘› # 0)
7877adantl 277 . . . . . . . . . 10 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ๐‘› # 0)
7966, 69, 62, 78, 63divcanap7d 8775 . . . . . . . . 9 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ ((๐‘ง / (๐‘ง gcd ๐‘›)) / (๐‘› / (๐‘ง gcd ๐‘›))) = (๐‘ง / ๐‘›))
8079eqeq2d 2189 . . . . . . . 8 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐ด = ((๐‘ง / (๐‘ง gcd ๐‘›)) / (๐‘› / (๐‘ง gcd ๐‘›))) โ†” ๐ด = (๐‘ง / ๐‘›)))
8180biimp3ar 1346 . . . . . . 7 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ ๐ด = ((๐‘ง / (๐‘ง gcd ๐‘›)) / (๐‘› / (๐‘ง gcd ๐‘›))))
8276, 81jca 306 . . . . . 6 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ (((๐‘ง / (๐‘ง gcd ๐‘›)) gcd (๐‘› / (๐‘ง gcd ๐‘›))) = 1 โˆง ๐ด = ((๐‘ง / (๐‘ง gcd ๐‘›)) / (๐‘› / (๐‘ง gcd ๐‘›)))))
8338, 58, 82rspcedvd 2847 . . . . 5 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ โˆƒ๐‘ฅ โˆˆ (โ„ค ร— โ„•)(((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))))
84 elxp6 6169 . . . . . . 7 (๐‘ฅ โˆˆ (โ„ค ร— โ„•) โ†” (๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)))
85 elxp6 6169 . . . . . . 7 (๐‘ฆ โˆˆ (โ„ค ร— โ„•) โ†” (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•)))
86 simprl 529 . . . . . . . . . . . 12 ((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โ†’ (1st โ€˜๐‘ฅ) โˆˆ โ„ค)
8786ad2antrr 488 . . . . . . . . . . 11 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ (1st โ€˜๐‘ฅ) โˆˆ โ„ค)
88 simprr 531 . . . . . . . . . . . 12 ((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โ†’ (2nd โ€˜๐‘ฅ) โˆˆ โ„•)
8988ad2antrr 488 . . . . . . . . . . 11 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ (2nd โ€˜๐‘ฅ) โˆˆ โ„•)
90 simprll 537 . . . . . . . . . . 11 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ ((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1)
91 simprl 529 . . . . . . . . . . . 12 ((๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•)) โ†’ (1st โ€˜๐‘ฆ) โˆˆ โ„ค)
9291ad2antlr 489 . . . . . . . . . . 11 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ (1st โ€˜๐‘ฆ) โˆˆ โ„ค)
93 simprr 531 . . . . . . . . . . . 12 ((๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•)) โ†’ (2nd โ€˜๐‘ฆ) โˆˆ โ„•)
9493ad2antlr 489 . . . . . . . . . . 11 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ (2nd โ€˜๐‘ฆ) โˆˆ โ„•)
95 simprrl 539 . . . . . . . . . . 11 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ ((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1)
96 simprlr 538 . . . . . . . . . . . 12 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ)))
97 simprrr 540 . . . . . . . . . . . 12 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ)))
9896, 97eqtr3d 2212 . . . . . . . . . . 11 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ)) = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ)))
99 qredeq 12095 . . . . . . . . . . 11 ((((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„• โˆง ((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1) โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„• โˆง ((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1) โˆง ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ)) = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))) โ†’ ((1st โ€˜๐‘ฅ) = (1st โ€˜๐‘ฆ) โˆง (2nd โ€˜๐‘ฅ) = (2nd โ€˜๐‘ฆ)))
10087, 89, 90, 92, 94, 95, 98, 99syl331anc 1263 . . . . . . . . . 10 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ ((1st โ€˜๐‘ฅ) = (1st โ€˜๐‘ฆ) โˆง (2nd โ€˜๐‘ฅ) = (2nd โ€˜๐‘ฆ)))
101 vex 2740 . . . . . . . . . . . 12 ๐‘ฅ โˆˆ V
102 1stexg 6167 . . . . . . . . . . . 12 (๐‘ฅ โˆˆ V โ†’ (1st โ€˜๐‘ฅ) โˆˆ V)
103101, 102ax-mp 5 . . . . . . . . . . 11 (1st โ€˜๐‘ฅ) โˆˆ V
104 2ndexg 6168 . . . . . . . . . . . 12 (๐‘ฅ โˆˆ V โ†’ (2nd โ€˜๐‘ฅ) โˆˆ V)
105101, 104ax-mp 5 . . . . . . . . . . 11 (2nd โ€˜๐‘ฅ) โˆˆ V
106103, 105opth 4237 . . . . . . . . . 10 (โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โ†” ((1st โ€˜๐‘ฅ) = (1st โ€˜๐‘ฆ) โˆง (2nd โ€˜๐‘ฅ) = (2nd โ€˜๐‘ฆ)))
107100, 106sylibr 134 . . . . . . . . 9 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ)
108 simplll 533 . . . . . . . . 9 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ ๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ)
109 simplrl 535 . . . . . . . . 9 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ ๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ)
110107, 108, 1093eqtr4d 2220 . . . . . . . 8 ((((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โˆง ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))) โ†’ ๐‘ฅ = ๐‘ฆ)
111110ex 115 . . . . . . 7 (((๐‘ฅ = โŸจ(1st โ€˜๐‘ฅ), (2nd โ€˜๐‘ฅ)โŸฉ โˆง ((1st โ€˜๐‘ฅ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฅ) โˆˆ โ„•)) โˆง (๐‘ฆ = โŸจ(1st โ€˜๐‘ฆ), (2nd โ€˜๐‘ฆ)โŸฉ โˆง ((1st โ€˜๐‘ฆ) โˆˆ โ„ค โˆง (2nd โ€˜๐‘ฆ) โˆˆ โ„•))) โ†’ (((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ)))) โ†’ ๐‘ฅ = ๐‘ฆ))
11284, 85, 111syl2anb 291 . . . . . 6 ((๐‘ฅ โˆˆ (โ„ค ร— โ„•) โˆง ๐‘ฆ โˆˆ (โ„ค ร— โ„•)) โ†’ (((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ)))) โ†’ ๐‘ฅ = ๐‘ฆ))
113112rgen2a 2531 . . . . 5 โˆ€๐‘ฅ โˆˆ (โ„ค ร— โ„•)โˆ€๐‘ฆ โˆˆ (โ„ค ร— โ„•)(((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ)))) โ†’ ๐‘ฅ = ๐‘ฆ)
11483, 113jctir 313 . . . 4 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„• โˆง ๐ด = (๐‘ง / ๐‘›)) โ†’ (โˆƒ๐‘ฅ โˆˆ (โ„ค ร— โ„•)(((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง โˆ€๐‘ฅ โˆˆ (โ„ค ร— โ„•)โˆ€๐‘ฆ โˆˆ (โ„ค ร— โ„•)(((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ)))) โ†’ ๐‘ฅ = ๐‘ฆ)))
1151143expia 1205 . . 3 ((๐‘ง โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„•) โ†’ (๐ด = (๐‘ง / ๐‘›) โ†’ (โˆƒ๐‘ฅ โˆˆ (โ„ค ร— โ„•)(((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง โˆ€๐‘ฅ โˆˆ (โ„ค ร— โ„•)โˆ€๐‘ฆ โˆˆ (โ„ค ร— โ„•)(((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ)))) โ†’ ๐‘ฅ = ๐‘ฆ))))
116115rexlimivv 2600 . 2 (โˆƒ๐‘ง โˆˆ โ„ค โˆƒ๐‘› โˆˆ โ„• ๐ด = (๐‘ง / ๐‘›) โ†’ (โˆƒ๐‘ฅ โˆˆ (โ„ค ร— โ„•)(((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง โˆ€๐‘ฅ โˆˆ (โ„ค ร— โ„•)โˆ€๐‘ฆ โˆˆ (โ„ค ร— โ„•)(((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ)))) โ†’ ๐‘ฅ = ๐‘ฆ)))
117 elq 9621 . 2 (๐ด โˆˆ โ„š โ†” โˆƒ๐‘ง โˆˆ โ„ค โˆƒ๐‘› โˆˆ โ„• ๐ด = (๐‘ง / ๐‘›))
118 fveq2 5515 . . . . . 6 (๐‘ฅ = ๐‘ฆ โ†’ (1st โ€˜๐‘ฅ) = (1st โ€˜๐‘ฆ))
119 fveq2 5515 . . . . . 6 (๐‘ฅ = ๐‘ฆ โ†’ (2nd โ€˜๐‘ฅ) = (2nd โ€˜๐‘ฆ))
120118, 119oveq12d 5892 . . . . 5 (๐‘ฅ = ๐‘ฆ โ†’ ((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = ((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)))
121120eqeq1d 2186 . . . 4 (๐‘ฅ = ๐‘ฆ โ†’ (((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โ†” ((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1))
122118, 119oveq12d 5892 . . . . 5 (๐‘ฅ = ๐‘ฆ โ†’ ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ)) = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ)))
123122eqeq2d 2189 . . . 4 (๐‘ฅ = ๐‘ฆ โ†’ (๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ)) โ†” ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ))))
124121, 123anbi12d 473 . . 3 (๐‘ฅ = ๐‘ฆ โ†’ ((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โ†” (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ)))))
125124reu4 2931 . 2 (โˆƒ!๐‘ฅ โˆˆ (โ„ค ร— โ„•)(((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โ†” (โˆƒ๐‘ฅ โˆˆ (โ„ค ร— โ„•)(((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง โˆ€๐‘ฅ โˆˆ (โ„ค ร— โ„•)โˆ€๐‘ฆ โˆˆ (โ„ค ร— โ„•)(((((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))) โˆง (((1st โ€˜๐‘ฆ) gcd (2nd โ€˜๐‘ฆ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฆ) / (2nd โ€˜๐‘ฆ)))) โ†’ ๐‘ฅ = ๐‘ฆ)))
126116, 117, 1253imtr4i 201 1 (๐ด โˆˆ โ„š โ†’ โˆƒ!๐‘ฅ โˆˆ (โ„ค ร— โ„•)(((1st โ€˜๐‘ฅ) gcd (2nd โ€˜๐‘ฅ)) = 1 โˆง ๐ด = ((1st โ€˜๐‘ฅ) / (2nd โ€˜๐‘ฅ))))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148   โ‰  wne 2347  โˆ€wral 2455  โˆƒwrex 2456  โˆƒ!wreu 2457  Vcvv 2737  โŸจcop 3595   class class class wbr 4003   ร— cxp 4624  โ€˜cfv 5216  (class class class)co 5874  1st c1st 6138  2nd c2nd 6139  โ„‚cc 7808  โ„cr 7809  0cc0 7810  1c1 7811   ยท cmul 7815   < clt 7991   # cap 8537   / cdiv 8628  โ„•cn 8918  โ„•0cn0 9175  โ„คcz 9252  โ„šcq 9618   โˆฅ cdvds 11793   gcd cgcd 11942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-sup 6982  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-fz 10008  df-fzo 10142  df-fl 10269  df-mod 10322  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-dvds 11794  df-gcd 11943
This theorem is referenced by:  qnumdencl  12186  qnumdenbi  12191
  Copyright terms: Public domain W3C validator