Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-d0clsepcl | GIF version |
Description: Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-d0clsepcl | ⊢ DECID 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4116 | . . . . . . 7 ⊢ ∅ ∈ V | |
2 | 1 | bj-snex 13948 | . . . . . 6 ⊢ {∅} ∈ V |
3 | 2 | zfauscl 4109 | . . . . 5 ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) |
4 | eleq1 2233 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑎 ↔ ∅ ∈ 𝑎)) | |
5 | eleq1 2233 | . . . . . . . 8 ⊢ (𝑥 = ∅ → (𝑥 ∈ {∅} ↔ ∅ ∈ {∅})) | |
6 | 5 | anbi1d 462 | . . . . . . 7 ⊢ (𝑥 = ∅ → ((𝑥 ∈ {∅} ∧ 𝜑) ↔ (∅ ∈ {∅} ∧ 𝜑))) |
7 | 4, 6 | bibi12d 234 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)))) |
8 | 1, 7 | spcv 2824 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) → (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑))) |
9 | 3, 8 | eximii 1595 | . . . 4 ⊢ ∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) |
10 | 1 | snid 3614 | . . . . . . . 8 ⊢ ∅ ∈ {∅} |
11 | 10 | biantrur 301 | . . . . . . 7 ⊢ (𝜑 ↔ (∅ ∈ {∅} ∧ 𝜑)) |
12 | 11 | bicomi 131 | . . . . . 6 ⊢ ((∅ ∈ {∅} ∧ 𝜑) ↔ 𝜑) |
13 | 12 | bibi2i 226 | . . . . 5 ⊢ ((∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ 𝜑)) |
14 | 13 | exbii 1598 | . . . 4 ⊢ (∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ ∃𝑎(∅ ∈ 𝑎 ↔ 𝜑)) |
15 | 9, 14 | mpbi 144 | . . 3 ⊢ ∃𝑎(∅ ∈ 𝑎 ↔ 𝜑) |
16 | bj-bd0el 13903 | . . . . 5 ⊢ BOUNDED ∅ ∈ 𝑎 | |
17 | 16 | ax-bj-d0cl 13959 | . . . 4 ⊢ DECID ∅ ∈ 𝑎 |
18 | dcbiit 834 | . . . 4 ⊢ ((∅ ∈ 𝑎 ↔ 𝜑) → (DECID ∅ ∈ 𝑎 ↔ DECID 𝜑)) | |
19 | 17, 18 | mpbii 147 | . . 3 ⊢ ((∅ ∈ 𝑎 ↔ 𝜑) → DECID 𝜑) |
20 | 15, 19 | eximii 1595 | . 2 ⊢ ∃𝑎DECID 𝜑 |
21 | bj-ex 13797 | . 2 ⊢ (∃𝑎DECID 𝜑 → DECID 𝜑) | |
22 | 20, 21 | ax-mp 5 | 1 ⊢ DECID 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 DECID wdc 829 ∀wal 1346 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∅c0 3414 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pr 4194 ax-bd0 13848 ax-bdim 13849 ax-bdor 13851 ax-bdn 13852 ax-bdal 13853 ax-bdex 13854 ax-bdeq 13855 ax-bdsep 13919 ax-bj-d0cl 13959 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-bdc 13876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |