Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-d0clsepcl GIF version

Theorem bj-d0clsepcl 13294
Description: Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-d0clsepcl DECID 𝜑

Proof of Theorem bj-d0clsepcl
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4063 . . . . . . 7 ∅ ∈ V
21bj-snex 13282 . . . . . 6 {∅} ∈ V
32zfauscl 4056 . . . . 5 𝑎𝑥(𝑥𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑))
4 eleq1 2203 . . . . . . 7 (𝑥 = ∅ → (𝑥𝑎 ↔ ∅ ∈ 𝑎))
5 eleq1 2203 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ∈ {∅} ↔ ∅ ∈ {∅}))
65anbi1d 461 . . . . . . 7 (𝑥 = ∅ → ((𝑥 ∈ {∅} ∧ 𝜑) ↔ (∅ ∈ {∅} ∧ 𝜑)))
74, 6bibi12d 234 . . . . . 6 (𝑥 = ∅ → ((𝑥𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑))))
81, 7spcv 2783 . . . . 5 (∀𝑥(𝑥𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) → (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)))
93, 8eximii 1582 . . . 4 𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑))
101snid 3563 . . . . . . . 8 ∅ ∈ {∅}
1110biantrur 301 . . . . . . 7 (𝜑 ↔ (∅ ∈ {∅} ∧ 𝜑))
1211bicomi 131 . . . . . 6 ((∅ ∈ {∅} ∧ 𝜑) ↔ 𝜑)
1312bibi2i 226 . . . . 5 ((∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎𝜑))
1413exbii 1585 . . . 4 (∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ ∃𝑎(∅ ∈ 𝑎𝜑))
159, 14mpbi 144 . . 3 𝑎(∅ ∈ 𝑎𝜑)
16 bj-bd0el 13237 . . . . 5 BOUNDED ∅ ∈ 𝑎
1716ax-bj-d0cl 13293 . . . 4 DECID ∅ ∈ 𝑎
18 dcbiit 825 . . . 4 ((∅ ∈ 𝑎𝜑) → (DECID ∅ ∈ 𝑎DECID 𝜑))
1917, 18mpbii 147 . . 3 ((∅ ∈ 𝑎𝜑) → DECID 𝜑)
2015, 19eximii 1582 . 2 𝑎DECID 𝜑
21 bj-ex 13140 . 2 (∃𝑎DECID 𝜑DECID 𝜑)
2220, 21ax-mp 5 1 DECID 𝜑
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  DECID wdc 820  wal 1330   = wceq 1332  wex 1469  wcel 1481  c0 3368  {csn 3532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pr 4139  ax-bd0 13182  ax-bdim 13183  ax-bdor 13185  ax-bdn 13186  ax-bdal 13187  ax-bdex 13188  ax-bdeq 13189  ax-bdsep 13253  ax-bj-d0cl 13293
This theorem depends on definitions:  df-bi 116  df-dc 821  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-sn 3538  df-pr 3539  df-bdc 13210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator