![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-d0clsepcl | GIF version |
Description: Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-d0clsepcl | ⊢ DECID 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4132 | . . . . . . 7 ⊢ ∅ ∈ V | |
2 | 1 | bj-snex 14826 | . . . . . 6 ⊢ {∅} ∈ V |
3 | 2 | zfauscl 4125 | . . . . 5 ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) |
4 | eleq1 2240 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑎 ↔ ∅ ∈ 𝑎)) | |
5 | eleq1 2240 | . . . . . . . 8 ⊢ (𝑥 = ∅ → (𝑥 ∈ {∅} ↔ ∅ ∈ {∅})) | |
6 | 5 | anbi1d 465 | . . . . . . 7 ⊢ (𝑥 = ∅ → ((𝑥 ∈ {∅} ∧ 𝜑) ↔ (∅ ∈ {∅} ∧ 𝜑))) |
7 | 4, 6 | bibi12d 235 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)))) |
8 | 1, 7 | spcv 2833 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) → (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑))) |
9 | 3, 8 | eximii 1602 | . . . 4 ⊢ ∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) |
10 | 1 | snid 3625 | . . . . . . . 8 ⊢ ∅ ∈ {∅} |
11 | 10 | biantrur 303 | . . . . . . 7 ⊢ (𝜑 ↔ (∅ ∈ {∅} ∧ 𝜑)) |
12 | 11 | bicomi 132 | . . . . . 6 ⊢ ((∅ ∈ {∅} ∧ 𝜑) ↔ 𝜑) |
13 | 12 | bibi2i 227 | . . . . 5 ⊢ ((∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ 𝜑)) |
14 | 13 | exbii 1605 | . . . 4 ⊢ (∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ ∃𝑎(∅ ∈ 𝑎 ↔ 𝜑)) |
15 | 9, 14 | mpbi 145 | . . 3 ⊢ ∃𝑎(∅ ∈ 𝑎 ↔ 𝜑) |
16 | bj-bd0el 14781 | . . . . 5 ⊢ BOUNDED ∅ ∈ 𝑎 | |
17 | 16 | ax-bj-d0cl 14837 | . . . 4 ⊢ DECID ∅ ∈ 𝑎 |
18 | dcbiit 839 | . . . 4 ⊢ ((∅ ∈ 𝑎 ↔ 𝜑) → (DECID ∅ ∈ 𝑎 ↔ DECID 𝜑)) | |
19 | 17, 18 | mpbii 148 | . . 3 ⊢ ((∅ ∈ 𝑎 ↔ 𝜑) → DECID 𝜑) |
20 | 15, 19 | eximii 1602 | . 2 ⊢ ∃𝑎DECID 𝜑 |
21 | bj-ex 14675 | . 2 ⊢ (∃𝑎DECID 𝜑 → DECID 𝜑) | |
22 | 20, 21 | ax-mp 5 | 1 ⊢ DECID 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 DECID wdc 834 ∀wal 1351 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∅c0 3424 {csn 3594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pr 4211 ax-bd0 14726 ax-bdim 14727 ax-bdor 14729 ax-bdn 14730 ax-bdal 14731 ax-bdex 14732 ax-bdeq 14733 ax-bdsep 14797 ax-bj-d0cl 14837 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-sn 3600 df-pr 3601 df-bdc 14754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |