Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-d0clsepcl GIF version

Theorem bj-d0clsepcl 15999
Description: Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-d0clsepcl DECID 𝜑

Proof of Theorem bj-d0clsepcl
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4179 . . . . . . 7 ∅ ∈ V
21bj-snex 15987 . . . . . 6 {∅} ∈ V
32zfauscl 4172 . . . . 5 𝑎𝑥(𝑥𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑))
4 eleq1 2269 . . . . . . 7 (𝑥 = ∅ → (𝑥𝑎 ↔ ∅ ∈ 𝑎))
5 eleq1 2269 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ∈ {∅} ↔ ∅ ∈ {∅}))
65anbi1d 465 . . . . . . 7 (𝑥 = ∅ → ((𝑥 ∈ {∅} ∧ 𝜑) ↔ (∅ ∈ {∅} ∧ 𝜑)))
74, 6bibi12d 235 . . . . . 6 (𝑥 = ∅ → ((𝑥𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑))))
81, 7spcv 2871 . . . . 5 (∀𝑥(𝑥𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) → (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)))
93, 8eximii 1626 . . . 4 𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑))
101snid 3669 . . . . . . . 8 ∅ ∈ {∅}
1110biantrur 303 . . . . . . 7 (𝜑 ↔ (∅ ∈ {∅} ∧ 𝜑))
1211bicomi 132 . . . . . 6 ((∅ ∈ {∅} ∧ 𝜑) ↔ 𝜑)
1312bibi2i 227 . . . . 5 ((∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎𝜑))
1413exbii 1629 . . . 4 (∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ ∃𝑎(∅ ∈ 𝑎𝜑))
159, 14mpbi 145 . . 3 𝑎(∅ ∈ 𝑎𝜑)
16 bj-bd0el 15942 . . . . 5 BOUNDED ∅ ∈ 𝑎
1716ax-bj-d0cl 15998 . . . 4 DECID ∅ ∈ 𝑎
18 dcbiit 841 . . . 4 ((∅ ∈ 𝑎𝜑) → (DECID ∅ ∈ 𝑎DECID 𝜑))
1917, 18mpbii 148 . . 3 ((∅ ∈ 𝑎𝜑) → DECID 𝜑)
2015, 19eximii 1626 . 2 𝑎DECID 𝜑
21 bj-ex 15837 . 2 (∃𝑎DECID 𝜑DECID 𝜑)
2220, 21ax-mp 5 1 DECID 𝜑
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  DECID wdc 836  wal 1371   = wceq 1373  wex 1516  wcel 2177  c0 3464  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pr 4261  ax-bd0 15887  ax-bdim 15888  ax-bdor 15890  ax-bdn 15891  ax-bdal 15892  ax-bdex 15893  ax-bdeq 15894  ax-bdsep 15958  ax-bj-d0cl 15998
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-sn 3644  df-pr 3645  df-bdc 15915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator