![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-d0clsepcl | GIF version |
Description: Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-d0clsepcl | ⊢ DECID 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4156 | . . . . . . 7 ⊢ ∅ ∈ V | |
2 | 1 | bj-snex 15405 | . . . . . 6 ⊢ {∅} ∈ V |
3 | 2 | zfauscl 4149 | . . . . 5 ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) |
4 | eleq1 2256 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑎 ↔ ∅ ∈ 𝑎)) | |
5 | eleq1 2256 | . . . . . . . 8 ⊢ (𝑥 = ∅ → (𝑥 ∈ {∅} ↔ ∅ ∈ {∅})) | |
6 | 5 | anbi1d 465 | . . . . . . 7 ⊢ (𝑥 = ∅ → ((𝑥 ∈ {∅} ∧ 𝜑) ↔ (∅ ∈ {∅} ∧ 𝜑))) |
7 | 4, 6 | bibi12d 235 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)))) |
8 | 1, 7 | spcv 2854 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) → (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑))) |
9 | 3, 8 | eximii 1613 | . . . 4 ⊢ ∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) |
10 | 1 | snid 3649 | . . . . . . . 8 ⊢ ∅ ∈ {∅} |
11 | 10 | biantrur 303 | . . . . . . 7 ⊢ (𝜑 ↔ (∅ ∈ {∅} ∧ 𝜑)) |
12 | 11 | bicomi 132 | . . . . . 6 ⊢ ((∅ ∈ {∅} ∧ 𝜑) ↔ 𝜑) |
13 | 12 | bibi2i 227 | . . . . 5 ⊢ ((∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ 𝜑)) |
14 | 13 | exbii 1616 | . . . 4 ⊢ (∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ ∃𝑎(∅ ∈ 𝑎 ↔ 𝜑)) |
15 | 9, 14 | mpbi 145 | . . 3 ⊢ ∃𝑎(∅ ∈ 𝑎 ↔ 𝜑) |
16 | bj-bd0el 15360 | . . . . 5 ⊢ BOUNDED ∅ ∈ 𝑎 | |
17 | 16 | ax-bj-d0cl 15416 | . . . 4 ⊢ DECID ∅ ∈ 𝑎 |
18 | dcbiit 840 | . . . 4 ⊢ ((∅ ∈ 𝑎 ↔ 𝜑) → (DECID ∅ ∈ 𝑎 ↔ DECID 𝜑)) | |
19 | 17, 18 | mpbii 148 | . . 3 ⊢ ((∅ ∈ 𝑎 ↔ 𝜑) → DECID 𝜑) |
20 | 15, 19 | eximii 1613 | . 2 ⊢ ∃𝑎DECID 𝜑 |
21 | bj-ex 15254 | . 2 ⊢ (∃𝑎DECID 𝜑 → DECID 𝜑) | |
22 | 20, 21 | ax-mp 5 | 1 ⊢ DECID 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 DECID wdc 835 ∀wal 1362 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∅c0 3446 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pr 4238 ax-bd0 15305 ax-bdim 15306 ax-bdor 15308 ax-bdn 15309 ax-bdal 15310 ax-bdex 15311 ax-bdeq 15312 ax-bdsep 15376 ax-bj-d0cl 15416 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 df-pr 3625 df-bdc 15333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |