| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-d0clsepcl | GIF version | ||
| Description: Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-d0clsepcl | ⊢ DECID 𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ex 4160 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 2 | 1 | bj-snex 15559 | . . . . . 6 ⊢ {∅} ∈ V | 
| 3 | 2 | zfauscl 4153 | . . . . 5 ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) | 
| 4 | eleq1 2259 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑎 ↔ ∅ ∈ 𝑎)) | |
| 5 | eleq1 2259 | . . . . . . . 8 ⊢ (𝑥 = ∅ → (𝑥 ∈ {∅} ↔ ∅ ∈ {∅})) | |
| 6 | 5 | anbi1d 465 | . . . . . . 7 ⊢ (𝑥 = ∅ → ((𝑥 ∈ {∅} ∧ 𝜑) ↔ (∅ ∈ {∅} ∧ 𝜑))) | 
| 7 | 4, 6 | bibi12d 235 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)))) | 
| 8 | 1, 7 | spcv 2858 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) → (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑))) | 
| 9 | 3, 8 | eximii 1616 | . . . 4 ⊢ ∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) | 
| 10 | 1 | snid 3653 | . . . . . . . 8 ⊢ ∅ ∈ {∅} | 
| 11 | 10 | biantrur 303 | . . . . . . 7 ⊢ (𝜑 ↔ (∅ ∈ {∅} ∧ 𝜑)) | 
| 12 | 11 | bicomi 132 | . . . . . 6 ⊢ ((∅ ∈ {∅} ∧ 𝜑) ↔ 𝜑) | 
| 13 | 12 | bibi2i 227 | . . . . 5 ⊢ ((∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ 𝜑)) | 
| 14 | 13 | exbii 1619 | . . . 4 ⊢ (∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ ∃𝑎(∅ ∈ 𝑎 ↔ 𝜑)) | 
| 15 | 9, 14 | mpbi 145 | . . 3 ⊢ ∃𝑎(∅ ∈ 𝑎 ↔ 𝜑) | 
| 16 | bj-bd0el 15514 | . . . . 5 ⊢ BOUNDED ∅ ∈ 𝑎 | |
| 17 | 16 | ax-bj-d0cl 15570 | . . . 4 ⊢ DECID ∅ ∈ 𝑎 | 
| 18 | dcbiit 840 | . . . 4 ⊢ ((∅ ∈ 𝑎 ↔ 𝜑) → (DECID ∅ ∈ 𝑎 ↔ DECID 𝜑)) | |
| 19 | 17, 18 | mpbii 148 | . . 3 ⊢ ((∅ ∈ 𝑎 ↔ 𝜑) → DECID 𝜑) | 
| 20 | 15, 19 | eximii 1616 | . 2 ⊢ ∃𝑎DECID 𝜑 | 
| 21 | bj-ex 15408 | . 2 ⊢ (∃𝑎DECID 𝜑 → DECID 𝜑) | |
| 22 | 20, 21 | ax-mp 5 | 1 ⊢ DECID 𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 DECID wdc 835 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∅c0 3450 {csn 3622 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pr 4242 ax-bd0 15459 ax-bdim 15460 ax-bdor 15462 ax-bdn 15463 ax-bdal 15464 ax-bdex 15465 ax-bdeq 15466 ax-bdsep 15530 ax-bj-d0cl 15570 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 df-bdc 15487 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |