| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-d0clsepcl | GIF version | ||
| Description: Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-d0clsepcl | ⊢ DECID 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4210 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 2 | 1 | bj-snex 16234 | . . . . . 6 ⊢ {∅} ∈ V |
| 3 | 2 | zfauscl 4203 | . . . . 5 ⊢ ∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) |
| 4 | eleq1 2292 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑎 ↔ ∅ ∈ 𝑎)) | |
| 5 | eleq1 2292 | . . . . . . . 8 ⊢ (𝑥 = ∅ → (𝑥 ∈ {∅} ↔ ∅ ∈ {∅})) | |
| 6 | 5 | anbi1d 465 | . . . . . . 7 ⊢ (𝑥 = ∅ → ((𝑥 ∈ {∅} ∧ 𝜑) ↔ (∅ ∈ {∅} ∧ 𝜑))) |
| 7 | 4, 6 | bibi12d 235 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)))) |
| 8 | 1, 7 | spcv 2897 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 ∈ {∅} ∧ 𝜑)) → (∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑))) |
| 9 | 3, 8 | eximii 1648 | . . . 4 ⊢ ∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) |
| 10 | 1 | snid 3697 | . . . . . . . 8 ⊢ ∅ ∈ {∅} |
| 11 | 10 | biantrur 303 | . . . . . . 7 ⊢ (𝜑 ↔ (∅ ∈ {∅} ∧ 𝜑)) |
| 12 | 11 | bicomi 132 | . . . . . 6 ⊢ ((∅ ∈ {∅} ∧ 𝜑) ↔ 𝜑) |
| 13 | 12 | bibi2i 227 | . . . . 5 ⊢ ((∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ (∅ ∈ 𝑎 ↔ 𝜑)) |
| 14 | 13 | exbii 1651 | . . . 4 ⊢ (∃𝑎(∅ ∈ 𝑎 ↔ (∅ ∈ {∅} ∧ 𝜑)) ↔ ∃𝑎(∅ ∈ 𝑎 ↔ 𝜑)) |
| 15 | 9, 14 | mpbi 145 | . . 3 ⊢ ∃𝑎(∅ ∈ 𝑎 ↔ 𝜑) |
| 16 | bj-bd0el 16189 | . . . . 5 ⊢ BOUNDED ∅ ∈ 𝑎 | |
| 17 | 16 | ax-bj-d0cl 16245 | . . . 4 ⊢ DECID ∅ ∈ 𝑎 |
| 18 | dcbiit 844 | . . . 4 ⊢ ((∅ ∈ 𝑎 ↔ 𝜑) → (DECID ∅ ∈ 𝑎 ↔ DECID 𝜑)) | |
| 19 | 17, 18 | mpbii 148 | . . 3 ⊢ ((∅ ∈ 𝑎 ↔ 𝜑) → DECID 𝜑) |
| 20 | 15, 19 | eximii 1648 | . 2 ⊢ ∃𝑎DECID 𝜑 |
| 21 | bj-ex 16084 | . 2 ⊢ (∃𝑎DECID 𝜑 → DECID 𝜑) | |
| 22 | 20, 21 | ax-mp 5 | 1 ⊢ DECID 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 DECID wdc 839 ∀wal 1393 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∅c0 3491 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pr 4292 ax-bd0 16134 ax-bdim 16135 ax-bdor 16137 ax-bdn 16138 ax-bdal 16139 ax-bdex 16140 ax-bdeq 16141 ax-bdsep 16205 ax-bj-d0cl 16245 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-bdc 16162 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |