Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nvel GIF version

Theorem bj-nvel 15971
Description: nvel 4185 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nvel ¬ V ∈ 𝐴

Proof of Theorem bj-nvel
StepHypRef Expression
1 bj-vprc 15970 . 2 ¬ V ∈ V
2 elex 2785 . 2 (V ∈ 𝐴 → V ∈ V)
31, 2mto 664 1 ¬ V ∈ 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2177  Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-13 2179  ax-14 2180  ax-ext 2188  ax-bdn 15891  ax-bdel 15895  ax-bdsep 15958
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator