Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nvel GIF version

Theorem bj-nvel 12929
Description: nvel 4029 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nvel ¬ V ∈ 𝐴

Proof of Theorem bj-nvel
StepHypRef Expression
1 bj-vprc 12928 . 2 ¬ V ∈ V
2 elex 2669 . 2 (V ∈ 𝐴 → V ∈ V)
31, 2mto 634 1 ¬ V ∈ 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 1463  Vcvv 2658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-ext 2097  ax-bdn 12849  ax-bdel 12853  ax-bdsep 12916
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-v 2660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator