Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elex | GIF version |
Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1605 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
2 | df-clel 2161 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | isset 2732 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
4 | 1, 2, 3 | 3imtr4i 200 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: elexi 2738 elexd 2739 elisset 2740 vtoclgft 2776 vtoclgf 2784 vtoclg1f 2785 vtocl2gf 2788 vtocl3gf 2789 spcimgft 2802 spcimegft 2804 elab4g 2875 elrabf 2880 mob 2908 sbcex 2959 sbcel1v 3013 sbcabel 3032 csbcomg 3068 csbvarg 3073 csbiebt 3084 csbnestgf 3097 csbidmg 3101 sbcco3g 3102 csbco3g 3103 eldif 3125 ssv 3164 elun 3263 elin 3305 elpwb 3569 snidb 3606 dfopg 3756 eluni 3792 eliun 3870 csbexga 4110 nvel 4115 class2seteq 4142 axpweq 4150 snelpwi 4190 opexg 4206 elopab 4236 epelg 4268 elon2 4354 unexg 4421 reuhypd 4449 sucexg 4475 sucelon 4480 onsucelsucr 4485 sucunielr 4487 en2lp 4531 peano2 4572 peano2b 4592 opelvvg 4653 opeliunxp 4659 opeliunxp2 4744 ideqg 4755 elrnmptg 4856 imasng 4969 iniseg 4976 opswapg 5090 elxp4 5091 elxp5 5092 dmmptg 5101 iota2 5179 fnmpt 5314 fvexg 5505 fvelimab 5542 mptfvex 5571 fvmptdf 5573 fvmptdv2 5575 mpteqb 5576 fvmptt 5577 fvmptf 5578 fvopab6 5582 fsn2 5659 fmptpr 5677 eloprabga 5929 ovmpos 5965 ov2gf 5966 ovmpodxf 5967 ovmpox 5970 ovmpoga 5971 ovmpodf 5973 ovi3 5978 ovelrn 5990 suppssfv 6046 suppssov1 6047 offval3 6102 1stexg 6135 2ndexg 6136 elxp6 6137 elxp7 6138 releldm2 6153 fnmpo 6170 mpofvex 6171 mpoexg 6179 opeliunxp2f 6206 brtpos2 6219 rdgtfr 6342 rdgruledefgg 6343 frec0g 6365 sucinc2 6414 nntri3or 6461 relelec 6541 ecdmn0m 6543 mapvalg 6624 pmvalg 6625 elpmg 6630 elixp2 6668 mptelixpg 6700 elixpsn 6701 map1 6778 mapdom1g 6813 mapxpen 6814 fival 6935 elfi2 6937 djulclr 7014 djurclr 7015 djulcl 7016 djurcl 7017 djulclb 7020 inl11 7030 djuss 7035 1stinl 7039 2ndinl 7040 1stinr 7041 2ndinr 7042 ismkvnex 7119 omniwomnimkv 7131 cc4n 7212 elinp 7415 addnqprlemfl 7500 addnqprlemfu 7501 mulnqprlemfl 7516 mulnqprlemfu 7517 recexprlemell 7563 recexprlemelu 7564 shftfvalg 10760 clim 11222 climmpt 11241 climshft2 11247 4sqlem2 12319 isstruct2r 12405 slotex 12421 setsvalg 12424 setsfun0 12430 setscom 12434 restval 12562 topnvalg 12568 plusffvalg 12593 grpidvalg 12604 toponsspwpwg 12660 tgval 12689 eltg 12692 eltg2 12693 restbasg 12808 tgrest 12809 txvalex 12894 txval 12895 ispsmet 12963 ismet 12984 isxmet 12985 xmetunirn 12998 blfvalps 13025 bj-vtoclgft 13656 djucllem 13681 bj-nvel 13779 |
Copyright terms: Public domain | W3C validator |