| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex | GIF version | ||
| Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1663 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
| 2 | df-clel 2225 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | isset 2806 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: elexi 2812 elexd 2813 elisset 2814 vtoclgft 2851 vtoclgf 2859 vtoclg1f 2860 vtocl2gf 2863 vtocl3gf 2864 spcimgft 2879 spcimegft 2881 elab4g 2952 elrabf 2957 mob 2985 sbcex 3037 sbcel1v 3091 sbcabel 3111 csbcomg 3147 csbvarg 3152 csbiebt 3164 csbnestgf 3177 csbidmg 3181 sbcco3g 3182 csbco3g 3183 eldif 3206 ssv 3246 elun 3345 elin 3387 elif 3614 elpwb 3659 snidb 3696 snssg 3801 dfopg 3854 eluni 3890 eliun 3968 csbexga 4211 nvel 4216 class2seteq 4246 axpweq 4254 snelpwi 4296 opexg 4313 elopab 4345 epelg 4380 elon2 4466 unexg 4533 reuhypd 4561 sucexg 4589 onsucb 4594 onsucelsucr 4599 sucunielr 4601 en2lp 4645 peano2 4686 peano2b 4706 opelvvg 4767 opeliunxp 4773 opeliunxp2 4861 ideqg 4872 elrnmptg 4975 imasng 5092 iniseg 5099 opswapg 5214 elxp4 5215 elxp5 5216 dmmptg 5225 iota2 5307 fnmpt 5449 fvexg 5645 fvelimab 5689 mptfvex 5719 fvmptdf 5721 fvmptdv2 5723 mpteqb 5724 fvmptt 5725 fvmptf 5726 fvopab6 5730 fsn2 5808 fmptpr 5830 eloprabga 6090 ovmpos 6127 ov2gf 6128 ovmpodxf 6129 ovmpox 6132 ovmpoga 6133 ovmpodf 6135 ovi3 6141 ovelrn 6153 suppssfv 6212 suppssov1 6213 offval3 6277 1stexg 6311 2ndexg 6312 elxp6 6313 elxp7 6314 releldm2 6329 fnmpo 6346 mpofvex 6349 mpoexg 6355 opeliunxp2f 6382 brtpos2 6395 rdgtfr 6518 rdgruledefgg 6519 frec0g 6541 sucinc2 6590 nntri3or 6637 relelec 6720 ecdmn0m 6722 mapvalg 6803 pmvalg 6804 elpmg 6809 elixp2 6847 mptelixpg 6879 elixpsn 6880 map1 6963 rex2dom 6969 mapdom1g 7004 mapxpen 7005 fival 7133 elfi2 7135 djulclr 7212 djurclr 7213 djulcl 7214 djurcl 7215 djulclb 7218 inl11 7228 djuss 7233 1stinl 7237 2ndinl 7238 1stinr 7239 2ndinr 7240 ismkvnex 7318 omniwomnimkv 7330 isacnm 7381 cc4n 7453 elinp 7657 addnqprlemfl 7742 addnqprlemfu 7743 mulnqprlemfl 7758 mulnqprlemfu 7759 recexprlemell 7805 recexprlemelu 7806 wrdexg 11077 wrdsymb0 11099 lswwrd 11113 ccatfvalfi 11122 swrdval 11175 swrd00g 11176 pfxval 11201 cats1fvn 11291 cats1fvnd 11292 s2fv1g 11315 s2leng 11316 s2dmg 11317 shftfvalg 11324 clim 11787 climmpt 11806 climshft2 11812 4sqlem2 12907 isstruct2r 13038 slotex 13054 setsvalg 13057 setsfun0 13063 setscom 13067 ressvalsets 13092 ressbasid 13098 restval 13273 topnvalg 13279 tgval 13290 ptex 13292 prdsex 13297 pwsval 13319 pwsbas 13320 pwselbasb 13321 pwssnf1o 13326 imasex 13333 qusex 13353 qusaddvallemg 13361 xpsfrnel2 13374 plusffvalg 13390 grpidvalg 13401 gsum0g 13424 sgrp1 13439 issubmnd 13470 pws0g 13479 issubm 13500 grppropstrg 13547 grpinvfvalg 13570 grpinvfng 13572 grpsubfvalg 13573 grpressid 13589 mulgfvalg 13653 mulgex 13655 mulgfng 13656 issubg 13705 subgex 13708 releqgg 13752 eqgex 13753 eqgfval 13754 isghm 13775 ablressid 13867 mgpvalg 13881 mgptopng 13887 rngressid 13912 rngpropd 13913 ringidvalg 13919 dfur2g 13920 issrg 13923 iscrng2 13973 ringressid 14021 opprvalg 14027 reldvdsrsrg 14050 dvdsrex 14056 unitgrp 14074 unitabl 14075 unitlinv 14084 unitrinv 14085 isnzr2 14142 issubrng 14157 issubrg 14179 subrgugrp 14198 aprap 14244 islmod 14249 scaffvalg 14264 lsssetm 14314 islssmg 14316 lspfval 14346 lspval 14348 lspcl 14349 lspex 14353 sraval 14395 rlmvalg 14412 rlmsubg 14416 rlmvnegg 14423 ixpsnbasval 14424 lidlvalg 14429 rspvalg 14430 lidlex 14431 rspex 14432 2idlvalg 14461 zrhvalg 14576 zlmval 14585 mplvalcoe 14648 mplbascoe 14649 mplplusgg 14661 toponsspwpwg 14690 eltg 14720 eltg2 14721 restbasg 14836 tgrest 14837 txvalex 14922 txval 14923 ispsmet 14991 ismet 15012 isxmet 15013 xmetunirn 15026 blfvalps 15053 vtxvalg 15811 iedgvalg 15812 vtxex 15813 edgvalg 15854 wksfval 16028 iswlkg 16032 wlkvtxeledgg 16041 bj-vtoclgft 16097 djucllem 16122 bj-nvel 16218 2omapen 16319 pw1mapen 16321 |
| Copyright terms: Public domain | W3C validator |