| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex | GIF version | ||
| Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1640 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
| 2 | df-clel 2201 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | isset 2778 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1515 ∈ wcel 2176 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: elexi 2784 elexd 2785 elisset 2786 vtoclgft 2823 vtoclgf 2831 vtoclg1f 2832 vtocl2gf 2835 vtocl3gf 2836 spcimgft 2849 spcimegft 2851 elab4g 2922 elrabf 2927 mob 2955 sbcex 3007 sbcel1v 3061 sbcabel 3080 csbcomg 3116 csbvarg 3121 csbiebt 3133 csbnestgf 3146 csbidmg 3150 sbcco3g 3151 csbco3g 3152 eldif 3175 ssv 3215 elun 3314 elin 3356 elpwb 3626 snidb 3663 snssg 3767 dfopg 3817 eluni 3853 eliun 3931 csbexga 4172 nvel 4177 class2seteq 4207 axpweq 4215 snelpwi 4256 opexg 4272 elopab 4304 epelg 4337 elon2 4423 unexg 4490 reuhypd 4518 sucexg 4546 onsucb 4551 onsucelsucr 4556 sucunielr 4558 en2lp 4602 peano2 4643 peano2b 4663 opelvvg 4724 opeliunxp 4730 opeliunxp2 4818 ideqg 4829 elrnmptg 4930 imasng 5047 iniseg 5054 opswapg 5169 elxp4 5170 elxp5 5171 dmmptg 5180 iota2 5261 fnmpt 5402 fvexg 5595 fvelimab 5635 mptfvex 5665 fvmptdf 5667 fvmptdv2 5669 mpteqb 5670 fvmptt 5671 fvmptf 5672 fvopab6 5676 fsn2 5754 fmptpr 5776 eloprabga 6032 ovmpos 6069 ov2gf 6070 ovmpodxf 6071 ovmpox 6074 ovmpoga 6075 ovmpodf 6077 ovi3 6083 ovelrn 6095 suppssfv 6154 suppssov1 6155 offval3 6219 1stexg 6253 2ndexg 6254 elxp6 6255 elxp7 6256 releldm2 6271 fnmpo 6288 mpofvex 6291 mpoexg 6297 opeliunxp2f 6324 brtpos2 6337 rdgtfr 6460 rdgruledefgg 6461 frec0g 6483 sucinc2 6532 nntri3or 6579 relelec 6662 ecdmn0m 6664 mapvalg 6745 pmvalg 6746 elpmg 6751 elixp2 6789 mptelixpg 6821 elixpsn 6822 map1 6904 rex2dom 6910 mapdom1g 6944 mapxpen 6945 fival 7072 elfi2 7074 djulclr 7151 djurclr 7152 djulcl 7153 djurcl 7154 djulclb 7157 inl11 7167 djuss 7172 1stinl 7176 2ndinl 7177 1stinr 7178 2ndinr 7179 ismkvnex 7257 omniwomnimkv 7269 isacnm 7315 cc4n 7383 elinp 7587 addnqprlemfl 7672 addnqprlemfu 7673 mulnqprlemfl 7688 mulnqprlemfu 7689 recexprlemell 7735 recexprlemelu 7736 wrdexg 11005 wrdsymb0 11026 lswwrd 11040 ccatfvalfi 11048 swrdval 11101 swrd00g 11102 shftfvalg 11129 clim 11592 climmpt 11611 climshft2 11617 4sqlem2 12712 isstruct2r 12843 slotex 12859 setsvalg 12862 setsfun0 12868 setscom 12872 ressvalsets 12896 ressbasid 12902 restval 13077 topnvalg 13083 tgval 13094 ptex 13096 prdsex 13101 pwsval 13123 pwsbas 13124 pwselbasb 13125 pwssnf1o 13130 imasex 13137 qusex 13157 qusaddvallemg 13165 xpsfrnel2 13178 plusffvalg 13194 grpidvalg 13205 gsum0g 13228 sgrp1 13243 issubmnd 13274 pws0g 13283 issubm 13304 grppropstrg 13351 grpinvfvalg 13374 grpinvfng 13376 grpsubfvalg 13377 grpressid 13393 mulgfvalg 13457 mulgex 13459 mulgfng 13460 issubg 13509 subgex 13512 releqgg 13556 eqgex 13557 eqgfval 13558 isghm 13579 ablressid 13671 mgpvalg 13685 mgptopng 13691 rngressid 13716 rngpropd 13717 ringidvalg 13723 dfur2g 13724 issrg 13727 iscrng2 13777 ringressid 13825 opprvalg 13831 reldvdsrsrg 13854 dvdsrex 13860 unitgrp 13878 unitabl 13879 unitlinv 13888 unitrinv 13889 isnzr2 13946 issubrng 13961 issubrg 13983 subrgugrp 14002 aprap 14048 islmod 14053 scaffvalg 14068 lsssetm 14118 islssmg 14120 lspfval 14150 lspval 14152 lspcl 14153 lspex 14157 sraval 14199 rlmvalg 14216 rlmsubg 14220 rlmvnegg 14227 ixpsnbasval 14228 lidlvalg 14233 rspvalg 14234 lidlex 14235 rspex 14236 2idlvalg 14265 zrhvalg 14380 zlmval 14389 mplvalcoe 14452 mplbascoe 14453 mplplusgg 14465 toponsspwpwg 14494 eltg 14524 eltg2 14525 restbasg 14640 tgrest 14641 txvalex 14726 txval 14727 ispsmet 14795 ismet 14816 isxmet 14817 xmetunirn 14830 blfvalps 14857 vtxvalg 15615 iedgvalg 15616 bj-vtoclgft 15711 djucllem 15736 bj-nvel 15833 2omapen 15933 |
| Copyright terms: Public domain | W3C validator |