Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elex | GIF version |
Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1610 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
2 | df-clel 2166 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | isset 2736 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
4 | 1, 2, 3 | 3imtr4i 200 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: elexi 2742 elexd 2743 elisset 2744 vtoclgft 2780 vtoclgf 2788 vtoclg1f 2789 vtocl2gf 2792 vtocl3gf 2793 spcimgft 2806 spcimegft 2808 elab4g 2879 elrabf 2884 mob 2912 sbcex 2963 sbcel1v 3017 sbcabel 3036 csbcomg 3072 csbvarg 3077 csbiebt 3088 csbnestgf 3101 csbidmg 3105 sbcco3g 3106 csbco3g 3107 eldif 3130 ssv 3169 elun 3268 elin 3310 elpwb 3576 snidb 3613 dfopg 3763 eluni 3799 eliun 3877 csbexga 4117 nvel 4122 class2seteq 4149 axpweq 4157 snelpwi 4197 opexg 4213 elopab 4243 epelg 4275 elon2 4361 unexg 4428 reuhypd 4456 sucexg 4482 sucelon 4487 onsucelsucr 4492 sucunielr 4494 en2lp 4538 peano2 4579 peano2b 4599 opelvvg 4660 opeliunxp 4666 opeliunxp2 4751 ideqg 4762 elrnmptg 4863 imasng 4976 iniseg 4983 opswapg 5097 elxp4 5098 elxp5 5099 dmmptg 5108 iota2 5188 fnmpt 5324 fvexg 5515 fvelimab 5552 mptfvex 5581 fvmptdf 5583 fvmptdv2 5585 mpteqb 5586 fvmptt 5587 fvmptf 5588 fvopab6 5592 fsn2 5670 fmptpr 5688 eloprabga 5940 ovmpos 5976 ov2gf 5977 ovmpodxf 5978 ovmpox 5981 ovmpoga 5982 ovmpodf 5984 ovi3 5989 ovelrn 6001 suppssfv 6057 suppssov1 6058 offval3 6113 1stexg 6146 2ndexg 6147 elxp6 6148 elxp7 6149 releldm2 6164 fnmpo 6181 mpofvex 6182 mpoexg 6190 opeliunxp2f 6217 brtpos2 6230 rdgtfr 6353 rdgruledefgg 6354 frec0g 6376 sucinc2 6425 nntri3or 6472 relelec 6553 ecdmn0m 6555 mapvalg 6636 pmvalg 6637 elpmg 6642 elixp2 6680 mptelixpg 6712 elixpsn 6713 map1 6790 mapdom1g 6825 mapxpen 6826 fival 6947 elfi2 6949 djulclr 7026 djurclr 7027 djulcl 7028 djurcl 7029 djulclb 7032 inl11 7042 djuss 7047 1stinl 7051 2ndinl 7052 1stinr 7053 2ndinr 7054 ismkvnex 7131 omniwomnimkv 7143 cc4n 7233 elinp 7436 addnqprlemfl 7521 addnqprlemfu 7522 mulnqprlemfl 7537 mulnqprlemfu 7538 recexprlemell 7584 recexprlemelu 7585 shftfvalg 10782 clim 11244 climmpt 11263 climshft2 11269 4sqlem2 12341 isstruct2r 12427 slotex 12443 setsvalg 12446 setsfun0 12452 setscom 12456 restval 12585 topnvalg 12591 plusffvalg 12616 grpidvalg 12627 sgrp1 12651 issubm 12695 grpinvfvalg 12745 grpinvfng 12747 grpsubfvalg 12748 toponsspwpwg 12814 tgval 12843 eltg 12846 eltg2 12847 restbasg 12962 tgrest 12963 txvalex 13048 txval 13049 ispsmet 13117 ismet 13138 isxmet 13139 xmetunirn 13152 blfvalps 13179 bj-vtoclgft 13810 djucllem 13835 bj-nvel 13932 |
Copyright terms: Public domain | W3C validator |