| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex | GIF version | ||
| Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1631 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
| 2 | df-clel 2192 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | isset 2769 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: elexi 2775 elexd 2776 elisset 2777 vtoclgft 2814 vtoclgf 2822 vtoclg1f 2823 vtocl2gf 2826 vtocl3gf 2827 spcimgft 2840 spcimegft 2842 elab4g 2913 elrabf 2918 mob 2946 sbcex 2998 sbcel1v 3052 sbcabel 3071 csbcomg 3107 csbvarg 3112 csbiebt 3124 csbnestgf 3137 csbidmg 3141 sbcco3g 3142 csbco3g 3143 eldif 3166 ssv 3206 elun 3305 elin 3347 elpwb 3616 snidb 3653 snssg 3757 dfopg 3807 eluni 3843 eliun 3921 csbexga 4162 nvel 4167 class2seteq 4197 axpweq 4205 snelpwi 4246 opexg 4262 elopab 4293 epelg 4326 elon2 4412 unexg 4479 reuhypd 4507 sucexg 4535 onsucb 4540 onsucelsucr 4545 sucunielr 4547 en2lp 4591 peano2 4632 peano2b 4652 opelvvg 4713 opeliunxp 4719 opeliunxp2 4807 ideqg 4818 elrnmptg 4919 imasng 5035 iniseg 5042 opswapg 5157 elxp4 5158 elxp5 5159 dmmptg 5168 iota2 5249 fnmpt 5387 fvexg 5580 fvelimab 5620 mptfvex 5650 fvmptdf 5652 fvmptdv2 5654 mpteqb 5655 fvmptt 5656 fvmptf 5657 fvopab6 5661 fsn2 5739 fmptpr 5757 eloprabga 6013 ovmpos 6050 ov2gf 6051 ovmpodxf 6052 ovmpox 6055 ovmpoga 6056 ovmpodf 6058 ovi3 6064 ovelrn 6076 suppssfv 6135 suppssov1 6136 offval3 6200 1stexg 6234 2ndexg 6235 elxp6 6236 elxp7 6237 releldm2 6252 fnmpo 6269 mpofvex 6272 mpoexg 6278 opeliunxp2f 6305 brtpos2 6318 rdgtfr 6441 rdgruledefgg 6442 frec0g 6464 sucinc2 6513 nntri3or 6560 relelec 6643 ecdmn0m 6645 mapvalg 6726 pmvalg 6727 elpmg 6732 elixp2 6770 mptelixpg 6802 elixpsn 6803 map1 6880 mapdom1g 6917 mapxpen 6918 fival 7045 elfi2 7047 djulclr 7124 djurclr 7125 djulcl 7126 djurcl 7127 djulclb 7130 inl11 7140 djuss 7145 1stinl 7149 2ndinl 7150 1stinr 7151 2ndinr 7152 ismkvnex 7230 omniwomnimkv 7242 isacnm 7288 cc4n 7356 elinp 7560 addnqprlemfl 7645 addnqprlemfu 7646 mulnqprlemfl 7661 mulnqprlemfu 7662 recexprlemell 7708 recexprlemelu 7709 wrdexg 10965 wrdsymb0 10986 shftfvalg 11002 clim 11465 climmpt 11484 climshft2 11490 4sqlem2 12585 isstruct2r 12716 slotex 12732 setsvalg 12735 setsfun0 12741 setscom 12745 ressvalsets 12769 ressbasid 12775 restval 12949 topnvalg 12955 tgval 12966 ptex 12968 prdsex 12973 pwsval 12995 pwsbas 12996 pwselbasb 12997 pwssnf1o 13002 imasex 13009 qusex 13029 qusaddvallemg 13037 xpsfrnel2 13050 plusffvalg 13066 grpidvalg 13077 gsum0g 13100 sgrp1 13115 issubmnd 13146 pws0g 13155 issubm 13176 grppropstrg 13223 grpinvfvalg 13246 grpinvfng 13248 grpsubfvalg 13249 grpressid 13265 mulgfvalg 13329 mulgex 13331 mulgfng 13332 issubg 13381 subgex 13384 releqgg 13428 eqgex 13429 eqgfval 13430 isghm 13451 ablressid 13543 mgpvalg 13557 mgptopng 13563 rngressid 13588 rngpropd 13589 ringidvalg 13595 dfur2g 13596 issrg 13599 iscrng2 13649 ringressid 13697 opprvalg 13703 reldvdsrsrg 13726 dvdsrex 13732 unitgrp 13750 unitabl 13751 unitlinv 13760 unitrinv 13761 isnzr2 13818 issubrng 13833 issubrg 13855 subrgugrp 13874 aprap 13920 islmod 13925 scaffvalg 13940 lsssetm 13990 islssmg 13992 lspfval 14022 lspval 14024 lspcl 14025 lspex 14029 sraval 14071 rlmvalg 14088 rlmsubg 14092 rlmvnegg 14099 ixpsnbasval 14100 lidlvalg 14105 rspvalg 14106 lidlex 14107 rspex 14108 2idlvalg 14137 zrhvalg 14252 zlmval 14261 mplvalcoe 14324 mplbascoe 14325 mplplusgg 14337 toponsspwpwg 14366 eltg 14396 eltg2 14397 restbasg 14512 tgrest 14513 txvalex 14598 txval 14599 ispsmet 14667 ismet 14688 isxmet 14689 xmetunirn 14702 blfvalps 14729 bj-vtoclgft 15529 djucllem 15554 bj-nvel 15651 2omapen 15751 |
| Copyright terms: Public domain | W3C validator |