![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elex | GIF version |
Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1617 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
2 | df-clel 2173 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | isset 2745 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2741 |
This theorem is referenced by: elexi 2751 elexd 2752 elisset 2753 vtoclgft 2789 vtoclgf 2797 vtoclg1f 2798 vtocl2gf 2801 vtocl3gf 2802 spcimgft 2815 spcimegft 2817 elab4g 2888 elrabf 2893 mob 2921 sbcex 2973 sbcel1v 3027 sbcabel 3046 csbcomg 3082 csbvarg 3087 csbiebt 3098 csbnestgf 3111 csbidmg 3115 sbcco3g 3116 csbco3g 3117 eldif 3140 ssv 3179 elun 3278 elin 3320 elpwb 3587 snidb 3624 snssg 3728 dfopg 3778 eluni 3814 eliun 3892 csbexga 4133 nvel 4138 class2seteq 4165 axpweq 4173 snelpwi 4214 opexg 4230 elopab 4260 epelg 4292 elon2 4378 unexg 4445 reuhypd 4473 sucexg 4499 onsucb 4504 onsucelsucr 4509 sucunielr 4511 en2lp 4555 peano2 4596 peano2b 4616 opelvvg 4677 opeliunxp 4683 opeliunxp2 4769 ideqg 4780 elrnmptg 4881 imasng 4995 iniseg 5002 opswapg 5117 elxp4 5118 elxp5 5119 dmmptg 5128 iota2 5208 fnmpt 5344 fvexg 5536 fvelimab 5574 mptfvex 5603 fvmptdf 5605 fvmptdv2 5607 mpteqb 5608 fvmptt 5609 fvmptf 5610 fvopab6 5614 fsn2 5692 fmptpr 5710 eloprabga 5964 ovmpos 6000 ov2gf 6001 ovmpodxf 6002 ovmpox 6005 ovmpoga 6006 ovmpodf 6008 ovi3 6013 ovelrn 6025 suppssfv 6081 suppssov1 6082 offval3 6137 1stexg 6170 2ndexg 6171 elxp6 6172 elxp7 6173 releldm2 6188 fnmpo 6205 mpofvex 6206 mpoexg 6214 opeliunxp2f 6241 brtpos2 6254 rdgtfr 6377 rdgruledefgg 6378 frec0g 6400 sucinc2 6449 nntri3or 6496 relelec 6577 ecdmn0m 6579 mapvalg 6660 pmvalg 6661 elpmg 6666 elixp2 6704 mptelixpg 6736 elixpsn 6737 map1 6814 mapdom1g 6849 mapxpen 6850 fival 6971 elfi2 6973 djulclr 7050 djurclr 7051 djulcl 7052 djurcl 7053 djulclb 7056 inl11 7066 djuss 7071 1stinl 7075 2ndinl 7076 1stinr 7077 2ndinr 7078 ismkvnex 7155 omniwomnimkv 7167 cc4n 7272 elinp 7475 addnqprlemfl 7560 addnqprlemfu 7561 mulnqprlemfl 7576 mulnqprlemfu 7577 recexprlemell 7623 recexprlemelu 7624 shftfvalg 10829 clim 11291 climmpt 11310 climshft2 11316 4sqlem2 12389 isstruct2r 12475 slotex 12491 setsvalg 12494 setsfun0 12500 setscom 12504 ressvalsets 12526 restval 12699 topnvalg 12705 tgval 12716 ptex 12718 prdsex 12723 imasex 12731 qusaddvallemg 12757 xpsfrnel2 12770 plusffvalg 12786 grpidvalg 12797 sgrp1 12821 issubmnd 12848 issubm 12868 grppropstrg 12900 grpinvfvalg 12920 grpinvfng 12922 grpsubfvalg 12923 grpressid 12936 mulgfvalg 12990 mulgfng 12992 issubg 13038 subgex 13041 releqgg 13085 eqgfval 13086 mgpvalg 13138 mgptopng 13144 ringidvalg 13149 dfur2g 13150 issrg 13153 iscrng2 13203 ringressid 13243 opprvalg 13246 reldvdsrsrg 13266 dvdsrex 13272 unitgrp 13290 unitabl 13291 unitlinv 13300 unitrinv 13301 issubrg 13347 subrgugrp 13366 aprap 13381 islmod 13386 scaffvalg 13401 lsssetm 13449 islssm 13450 toponsspwpwg 13561 eltg 13591 eltg2 13592 restbasg 13707 tgrest 13708 txvalex 13793 txval 13794 ispsmet 13862 ismet 13883 isxmet 13884 xmetunirn 13897 blfvalps 13924 bj-vtoclgft 14566 djucllem 14591 bj-nvel 14688 |
Copyright terms: Public domain | W3C validator |