Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elex | GIF version |
Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1610 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
2 | df-clel 2166 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | isset 2736 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
4 | 1, 2, 3 | 3imtr4i 200 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: elexi 2742 elexd 2743 elisset 2744 vtoclgft 2780 vtoclgf 2788 vtoclg1f 2789 vtocl2gf 2792 vtocl3gf 2793 spcimgft 2806 spcimegft 2808 elab4g 2879 elrabf 2884 mob 2912 sbcex 2963 sbcel1v 3017 sbcabel 3036 csbcomg 3072 csbvarg 3077 csbiebt 3088 csbnestgf 3101 csbidmg 3105 sbcco3g 3106 csbco3g 3107 eldif 3130 ssv 3169 elun 3268 elin 3310 elpwb 3574 snidb 3611 dfopg 3761 eluni 3797 eliun 3875 csbexga 4115 nvel 4120 class2seteq 4147 axpweq 4155 snelpwi 4195 opexg 4211 elopab 4241 epelg 4273 elon2 4359 unexg 4426 reuhypd 4454 sucexg 4480 sucelon 4485 onsucelsucr 4490 sucunielr 4492 en2lp 4536 peano2 4577 peano2b 4597 opelvvg 4658 opeliunxp 4664 opeliunxp2 4749 ideqg 4760 elrnmptg 4861 imasng 4974 iniseg 4981 opswapg 5095 elxp4 5096 elxp5 5097 dmmptg 5106 iota2 5186 fnmpt 5322 fvexg 5513 fvelimab 5550 mptfvex 5579 fvmptdf 5581 fvmptdv2 5583 mpteqb 5584 fvmptt 5585 fvmptf 5586 fvopab6 5590 fsn2 5667 fmptpr 5685 eloprabga 5937 ovmpos 5973 ov2gf 5974 ovmpodxf 5975 ovmpox 5978 ovmpoga 5979 ovmpodf 5981 ovi3 5986 ovelrn 5998 suppssfv 6054 suppssov1 6055 offval3 6110 1stexg 6143 2ndexg 6144 elxp6 6145 elxp7 6146 releldm2 6161 fnmpo 6178 mpofvex 6179 mpoexg 6187 opeliunxp2f 6214 brtpos2 6227 rdgtfr 6350 rdgruledefgg 6351 frec0g 6373 sucinc2 6422 nntri3or 6469 relelec 6549 ecdmn0m 6551 mapvalg 6632 pmvalg 6633 elpmg 6638 elixp2 6676 mptelixpg 6708 elixpsn 6709 map1 6786 mapdom1g 6821 mapxpen 6822 fival 6943 elfi2 6945 djulclr 7022 djurclr 7023 djulcl 7024 djurcl 7025 djulclb 7028 inl11 7038 djuss 7043 1stinl 7047 2ndinl 7048 1stinr 7049 2ndinr 7050 ismkvnex 7127 omniwomnimkv 7139 cc4n 7220 elinp 7423 addnqprlemfl 7508 addnqprlemfu 7509 mulnqprlemfl 7524 mulnqprlemfu 7525 recexprlemell 7571 recexprlemelu 7572 shftfvalg 10769 clim 11231 climmpt 11250 climshft2 11256 4sqlem2 12328 isstruct2r 12414 slotex 12430 setsvalg 12433 setsfun0 12439 setscom 12443 restval 12572 topnvalg 12578 plusffvalg 12603 grpidvalg 12614 sgrp1 12638 issubm 12682 toponsspwpwg 12773 tgval 12802 eltg 12805 eltg2 12806 restbasg 12921 tgrest 12922 txvalex 13007 txval 13008 ispsmet 13076 ismet 13097 isxmet 13098 xmetunirn 13111 blfvalps 13138 bj-vtoclgft 13769 djucllem 13794 bj-nvel 13892 |
Copyright terms: Public domain | W3C validator |