![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elex | GIF version |
Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1627 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
2 | df-clel 2184 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | isset 2757 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∃wex 1502 ∈ wcel 2159 Vcvv 2751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-v 2753 |
This theorem is referenced by: elexi 2763 elexd 2764 elisset 2765 vtoclgft 2801 vtoclgf 2809 vtoclg1f 2810 vtocl2gf 2813 vtocl3gf 2814 spcimgft 2827 spcimegft 2829 elab4g 2900 elrabf 2905 mob 2933 sbcex 2985 sbcel1v 3039 sbcabel 3058 csbcomg 3094 csbvarg 3099 csbiebt 3110 csbnestgf 3123 csbidmg 3127 sbcco3g 3128 csbco3g 3129 eldif 3152 ssv 3191 elun 3290 elin 3332 elpwb 3599 snidb 3636 snssg 3740 dfopg 3790 eluni 3826 eliun 3904 csbexga 4145 nvel 4150 class2seteq 4177 axpweq 4185 snelpwi 4226 opexg 4242 elopab 4272 epelg 4304 elon2 4390 unexg 4457 reuhypd 4485 sucexg 4511 onsucb 4516 onsucelsucr 4521 sucunielr 4523 en2lp 4567 peano2 4608 peano2b 4628 opelvvg 4689 opeliunxp 4695 opeliunxp2 4781 ideqg 4792 elrnmptg 4893 imasng 5007 iniseg 5014 opswapg 5129 elxp4 5130 elxp5 5131 dmmptg 5140 iota2 5220 fnmpt 5356 fvexg 5548 fvelimab 5587 mptfvex 5616 fvmptdf 5618 fvmptdv2 5620 mpteqb 5621 fvmptt 5622 fvmptf 5623 fvopab6 5627 fsn2 5705 fmptpr 5723 eloprabga 5977 ovmpos 6014 ov2gf 6015 ovmpodxf 6016 ovmpox 6019 ovmpoga 6020 ovmpodf 6022 ovi3 6027 ovelrn 6039 suppssfv 6096 suppssov1 6097 offval3 6152 1stexg 6185 2ndexg 6186 elxp6 6187 elxp7 6188 releldm2 6203 fnmpo 6220 mpofvex 6221 mpoexg 6229 opeliunxp2f 6256 brtpos2 6269 rdgtfr 6392 rdgruledefgg 6393 frec0g 6415 sucinc2 6464 nntri3or 6511 relelec 6592 ecdmn0m 6594 mapvalg 6675 pmvalg 6676 elpmg 6681 elixp2 6719 mptelixpg 6751 elixpsn 6752 map1 6829 mapdom1g 6864 mapxpen 6865 fival 6986 elfi2 6988 djulclr 7065 djurclr 7066 djulcl 7067 djurcl 7068 djulclb 7071 inl11 7081 djuss 7086 1stinl 7090 2ndinl 7091 1stinr 7092 2ndinr 7093 ismkvnex 7170 omniwomnimkv 7182 cc4n 7287 elinp 7490 addnqprlemfl 7575 addnqprlemfu 7576 mulnqprlemfl 7591 mulnqprlemfu 7592 recexprlemell 7638 recexprlemelu 7639 shftfvalg 10844 clim 11306 climmpt 11325 climshft2 11331 4sqlem2 12404 isstruct2r 12490 slotex 12506 setsvalg 12509 setsfun0 12515 setscom 12519 ressvalsets 12541 ressbasid 12547 restval 12715 topnvalg 12721 tgval 12732 ptex 12734 prdsex 12739 imasex 12747 qusex 12767 qusaddvallemg 12774 xpsfrnel2 12787 plusffvalg 12803 grpidvalg 12814 sgrp1 12839 issubmnd 12868 issubm 12889 grppropstrg 12929 grpinvfvalg 12951 grpinvfng 12953 grpsubfvalg 12954 grpressid 12970 mulgfvalg 13028 mulgex 13030 mulgfng 13031 issubg 13077 subgex 13080 releqgg 13124 eqgex 13125 eqgfval 13126 isghm 13142 ablressid 13232 mgpvalg 13237 mgptopng 13243 rngressid 13268 rngpropd 13269 ringidvalg 13275 dfur2g 13276 issrg 13279 iscrng2 13329 ringressid 13373 opprvalg 13379 reldvdsrsrg 13402 dvdsrex 13408 unitgrp 13426 unitabl 13427 unitlinv 13436 unitrinv 13437 issubrng 13506 issubrg 13528 subrgugrp 13547 aprap 13562 islmod 13567 scaffvalg 13582 lsssetm 13632 islssmg 13634 lspfval 13664 lspval 13666 lspcl 13667 lspex 13671 sraval 13713 rlmvalg 13730 rlmsubg 13734 rlmvnegg 13741 ixpsnbasval 13742 lidlvalg 13747 rspvalg 13748 lidlex 13749 rspex 13750 2idlvalg 13777 zlmval 13872 toponsspwpwg 13905 eltg 13935 eltg2 13936 restbasg 14051 tgrest 14052 txvalex 14137 txval 14138 ispsmet 14206 ismet 14227 isxmet 14228 xmetunirn 14241 blfvalps 14268 bj-vtoclgft 14910 djucllem 14935 bj-nvel 15032 |
Copyright terms: Public domain | W3C validator |