![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elex | GIF version |
Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1628 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
2 | df-clel 2189 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | isset 2766 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: elexi 2772 elexd 2773 elisset 2774 vtoclgft 2811 vtoclgf 2819 vtoclg1f 2820 vtocl2gf 2823 vtocl3gf 2824 spcimgft 2837 spcimegft 2839 elab4g 2910 elrabf 2915 mob 2943 sbcex 2995 sbcel1v 3049 sbcabel 3068 csbcomg 3104 csbvarg 3109 csbiebt 3121 csbnestgf 3134 csbidmg 3138 sbcco3g 3139 csbco3g 3140 eldif 3163 ssv 3202 elun 3301 elin 3343 elpwb 3612 snidb 3649 snssg 3753 dfopg 3803 eluni 3839 eliun 3917 csbexga 4158 nvel 4163 class2seteq 4193 axpweq 4201 snelpwi 4242 opexg 4258 elopab 4289 epelg 4322 elon2 4408 unexg 4475 reuhypd 4503 sucexg 4531 onsucb 4536 onsucelsucr 4541 sucunielr 4543 en2lp 4587 peano2 4628 peano2b 4648 opelvvg 4709 opeliunxp 4715 opeliunxp2 4803 ideqg 4814 elrnmptg 4915 imasng 5031 iniseg 5038 opswapg 5153 elxp4 5154 elxp5 5155 dmmptg 5164 iota2 5245 fnmpt 5381 fvexg 5574 fvelimab 5614 mptfvex 5644 fvmptdf 5646 fvmptdv2 5648 mpteqb 5649 fvmptt 5650 fvmptf 5651 fvopab6 5655 fsn2 5733 fmptpr 5751 eloprabga 6006 ovmpos 6043 ov2gf 6044 ovmpodxf 6045 ovmpox 6048 ovmpoga 6049 ovmpodf 6051 ovi3 6057 ovelrn 6069 suppssfv 6128 suppssov1 6129 offval3 6188 1stexg 6222 2ndexg 6223 elxp6 6224 elxp7 6225 releldm2 6240 fnmpo 6257 mpofvex 6260 mpoexg 6266 opeliunxp2f 6293 brtpos2 6306 rdgtfr 6429 rdgruledefgg 6430 frec0g 6452 sucinc2 6501 nntri3or 6548 relelec 6631 ecdmn0m 6633 mapvalg 6714 pmvalg 6715 elpmg 6720 elixp2 6758 mptelixpg 6790 elixpsn 6791 map1 6868 mapdom1g 6905 mapxpen 6906 fival 7031 elfi2 7033 djulclr 7110 djurclr 7111 djulcl 7112 djurcl 7113 djulclb 7116 inl11 7126 djuss 7131 1stinl 7135 2ndinl 7136 1stinr 7137 2ndinr 7138 ismkvnex 7216 omniwomnimkv 7228 cc4n 7333 elinp 7536 addnqprlemfl 7621 addnqprlemfu 7622 mulnqprlemfl 7637 mulnqprlemfu 7638 recexprlemell 7684 recexprlemelu 7685 wrdexg 10928 wrdsymb0 10949 shftfvalg 10965 clim 11427 climmpt 11446 climshft2 11452 4sqlem2 12530 isstruct2r 12632 slotex 12648 setsvalg 12651 setsfun0 12657 setscom 12661 ressvalsets 12685 ressbasid 12691 restval 12859 topnvalg 12865 tgval 12876 ptex 12878 prdsex 12883 imasex 12891 qusex 12911 qusaddvallemg 12919 xpsfrnel2 12932 plusffvalg 12948 grpidvalg 12959 gsum0g 12982 sgrp1 12997 issubmnd 13026 issubm 13047 grppropstrg 13094 grpinvfvalg 13117 grpinvfng 13119 grpsubfvalg 13120 grpressid 13136 mulgfvalg 13194 mulgex 13196 mulgfng 13197 issubg 13246 subgex 13249 releqgg 13293 eqgex 13294 eqgfval 13295 isghm 13316 ablressid 13408 mgpvalg 13422 mgptopng 13428 rngressid 13453 rngpropd 13454 ringidvalg 13460 dfur2g 13461 issrg 13464 iscrng2 13514 ringressid 13562 opprvalg 13568 reldvdsrsrg 13591 dvdsrex 13597 unitgrp 13615 unitabl 13616 unitlinv 13625 unitrinv 13626 isnzr2 13683 issubrng 13698 issubrg 13720 subrgugrp 13739 aprap 13785 islmod 13790 scaffvalg 13805 lsssetm 13855 islssmg 13857 lspfval 13887 lspval 13889 lspcl 13890 lspex 13894 sraval 13936 rlmvalg 13953 rlmsubg 13957 rlmvnegg 13964 ixpsnbasval 13965 lidlvalg 13970 rspvalg 13971 lidlex 13972 rspex 13973 2idlvalg 14002 zrhvalg 14117 zlmval 14126 toponsspwpwg 14201 eltg 14231 eltg2 14232 restbasg 14347 tgrest 14348 txvalex 14433 txval 14434 ispsmet 14502 ismet 14523 isxmet 14524 xmetunirn 14537 blfvalps 14564 bj-vtoclgft 15337 djucllem 15362 bj-nvel 15459 |
Copyright terms: Public domain | W3C validator |