| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex | GIF version | ||
| Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1639 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
| 2 | df-clel 2200 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | isset 2777 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: elexi 2783 elexd 2784 elisset 2785 vtoclgft 2822 vtoclgf 2830 vtoclg1f 2831 vtocl2gf 2834 vtocl3gf 2835 spcimgft 2848 spcimegft 2850 elab4g 2921 elrabf 2926 mob 2954 sbcex 3006 sbcel1v 3060 sbcabel 3079 csbcomg 3115 csbvarg 3120 csbiebt 3132 csbnestgf 3145 csbidmg 3149 sbcco3g 3150 csbco3g 3151 eldif 3174 ssv 3214 elun 3313 elin 3355 elpwb 3625 snidb 3662 snssg 3766 dfopg 3816 eluni 3852 eliun 3930 csbexga 4171 nvel 4176 class2seteq 4206 axpweq 4214 snelpwi 4255 opexg 4271 elopab 4303 epelg 4336 elon2 4422 unexg 4489 reuhypd 4517 sucexg 4545 onsucb 4550 onsucelsucr 4555 sucunielr 4557 en2lp 4601 peano2 4642 peano2b 4662 opelvvg 4723 opeliunxp 4729 opeliunxp2 4817 ideqg 4828 elrnmptg 4929 imasng 5046 iniseg 5053 opswapg 5168 elxp4 5169 elxp5 5170 dmmptg 5179 iota2 5260 fnmpt 5401 fvexg 5594 fvelimab 5634 mptfvex 5664 fvmptdf 5666 fvmptdv2 5668 mpteqb 5669 fvmptt 5670 fvmptf 5671 fvopab6 5675 fsn2 5753 fmptpr 5775 eloprabga 6031 ovmpos 6068 ov2gf 6069 ovmpodxf 6070 ovmpox 6073 ovmpoga 6074 ovmpodf 6076 ovi3 6082 ovelrn 6094 suppssfv 6153 suppssov1 6154 offval3 6218 1stexg 6252 2ndexg 6253 elxp6 6254 elxp7 6255 releldm2 6270 fnmpo 6287 mpofvex 6290 mpoexg 6296 opeliunxp2f 6323 brtpos2 6336 rdgtfr 6459 rdgruledefgg 6460 frec0g 6482 sucinc2 6531 nntri3or 6578 relelec 6661 ecdmn0m 6663 mapvalg 6744 pmvalg 6745 elpmg 6750 elixp2 6788 mptelixpg 6820 elixpsn 6821 map1 6903 rex2dom 6909 mapdom1g 6943 mapxpen 6944 fival 7071 elfi2 7073 djulclr 7150 djurclr 7151 djulcl 7152 djurcl 7153 djulclb 7156 inl11 7166 djuss 7171 1stinl 7175 2ndinl 7176 1stinr 7177 2ndinr 7178 ismkvnex 7256 omniwomnimkv 7268 isacnm 7314 cc4n 7382 elinp 7586 addnqprlemfl 7671 addnqprlemfu 7672 mulnqprlemfl 7687 mulnqprlemfu 7688 recexprlemell 7734 recexprlemelu 7735 wrdexg 11003 wrdsymb0 11024 lswwrd 11038 ccatfvalfi 11046 shftfvalg 11100 clim 11563 climmpt 11582 climshft2 11588 4sqlem2 12683 isstruct2r 12814 slotex 12830 setsvalg 12833 setsfun0 12839 setscom 12843 ressvalsets 12867 ressbasid 12873 restval 13048 topnvalg 13054 tgval 13065 ptex 13067 prdsex 13072 pwsval 13094 pwsbas 13095 pwselbasb 13096 pwssnf1o 13101 imasex 13108 qusex 13128 qusaddvallemg 13136 xpsfrnel2 13149 plusffvalg 13165 grpidvalg 13176 gsum0g 13199 sgrp1 13214 issubmnd 13245 pws0g 13254 issubm 13275 grppropstrg 13322 grpinvfvalg 13345 grpinvfng 13347 grpsubfvalg 13348 grpressid 13364 mulgfvalg 13428 mulgex 13430 mulgfng 13431 issubg 13480 subgex 13483 releqgg 13527 eqgex 13528 eqgfval 13529 isghm 13550 ablressid 13642 mgpvalg 13656 mgptopng 13662 rngressid 13687 rngpropd 13688 ringidvalg 13694 dfur2g 13695 issrg 13698 iscrng2 13748 ringressid 13796 opprvalg 13802 reldvdsrsrg 13825 dvdsrex 13831 unitgrp 13849 unitabl 13850 unitlinv 13859 unitrinv 13860 isnzr2 13917 issubrng 13932 issubrg 13954 subrgugrp 13973 aprap 14019 islmod 14024 scaffvalg 14039 lsssetm 14089 islssmg 14091 lspfval 14121 lspval 14123 lspcl 14124 lspex 14128 sraval 14170 rlmvalg 14187 rlmsubg 14191 rlmvnegg 14198 ixpsnbasval 14199 lidlvalg 14204 rspvalg 14205 lidlex 14206 rspex 14207 2idlvalg 14236 zrhvalg 14351 zlmval 14360 mplvalcoe 14423 mplbascoe 14424 mplplusgg 14436 toponsspwpwg 14465 eltg 14495 eltg2 14496 restbasg 14611 tgrest 14612 txvalex 14697 txval 14698 ispsmet 14766 ismet 14787 isxmet 14788 xmetunirn 14801 blfvalps 14828 vtxvalg 15586 iedgvalg 15587 bj-vtoclgft 15673 djucllem 15698 bj-nvel 15795 2omapen 15895 |
| Copyright terms: Public domain | W3C validator |