| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex | GIF version | ||
| Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1631 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
| 2 | df-clel 2192 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | isset 2769 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: elexi 2775 elexd 2776 elisset 2777 vtoclgft 2814 vtoclgf 2822 vtoclg1f 2823 vtocl2gf 2826 vtocl3gf 2827 spcimgft 2840 spcimegft 2842 elab4g 2913 elrabf 2918 mob 2946 sbcex 2998 sbcel1v 3052 sbcabel 3071 csbcomg 3107 csbvarg 3112 csbiebt 3124 csbnestgf 3137 csbidmg 3141 sbcco3g 3142 csbco3g 3143 eldif 3166 ssv 3206 elun 3305 elin 3347 elpwb 3616 snidb 3653 snssg 3757 dfopg 3807 eluni 3843 eliun 3921 csbexga 4162 nvel 4167 class2seteq 4197 axpweq 4205 snelpwi 4246 opexg 4262 elopab 4293 epelg 4326 elon2 4412 unexg 4479 reuhypd 4507 sucexg 4535 onsucb 4540 onsucelsucr 4545 sucunielr 4547 en2lp 4591 peano2 4632 peano2b 4652 opelvvg 4713 opeliunxp 4719 opeliunxp2 4807 ideqg 4818 elrnmptg 4919 imasng 5035 iniseg 5042 opswapg 5157 elxp4 5158 elxp5 5159 dmmptg 5168 iota2 5249 fnmpt 5387 fvexg 5580 fvelimab 5620 mptfvex 5650 fvmptdf 5652 fvmptdv2 5654 mpteqb 5655 fvmptt 5656 fvmptf 5657 fvopab6 5661 fsn2 5739 fmptpr 5757 eloprabga 6013 ovmpos 6050 ov2gf 6051 ovmpodxf 6052 ovmpox 6055 ovmpoga 6056 ovmpodf 6058 ovi3 6064 ovelrn 6076 suppssfv 6135 suppssov1 6136 offval3 6200 1stexg 6234 2ndexg 6235 elxp6 6236 elxp7 6237 releldm2 6252 fnmpo 6269 mpofvex 6272 mpoexg 6278 opeliunxp2f 6305 brtpos2 6318 rdgtfr 6441 rdgruledefgg 6442 frec0g 6464 sucinc2 6513 nntri3or 6560 relelec 6643 ecdmn0m 6645 mapvalg 6726 pmvalg 6727 elpmg 6732 elixp2 6770 mptelixpg 6802 elixpsn 6803 map1 6880 mapdom1g 6917 mapxpen 6918 fival 7045 elfi2 7047 djulclr 7124 djurclr 7125 djulcl 7126 djurcl 7127 djulclb 7130 inl11 7140 djuss 7145 1stinl 7149 2ndinl 7150 1stinr 7151 2ndinr 7152 ismkvnex 7230 omniwomnimkv 7242 isacnm 7286 cc4n 7354 elinp 7558 addnqprlemfl 7643 addnqprlemfu 7644 mulnqprlemfl 7659 mulnqprlemfu 7660 recexprlemell 7706 recexprlemelu 7707 wrdexg 10963 wrdsymb0 10984 shftfvalg 11000 clim 11463 climmpt 11482 climshft2 11488 4sqlem2 12583 isstruct2r 12714 slotex 12730 setsvalg 12733 setsfun0 12739 setscom 12743 ressvalsets 12767 ressbasid 12773 restval 12947 topnvalg 12953 tgval 12964 ptex 12966 prdsex 12971 pwsval 12993 pwsbas 12994 pwselbasb 12995 pwssnf1o 13000 imasex 13007 qusex 13027 qusaddvallemg 13035 xpsfrnel2 13048 plusffvalg 13064 grpidvalg 13075 gsum0g 13098 sgrp1 13113 issubmnd 13144 pws0g 13153 issubm 13174 grppropstrg 13221 grpinvfvalg 13244 grpinvfng 13246 grpsubfvalg 13247 grpressid 13263 mulgfvalg 13327 mulgex 13329 mulgfng 13330 issubg 13379 subgex 13382 releqgg 13426 eqgex 13427 eqgfval 13428 isghm 13449 ablressid 13541 mgpvalg 13555 mgptopng 13561 rngressid 13586 rngpropd 13587 ringidvalg 13593 dfur2g 13594 issrg 13597 iscrng2 13647 ringressid 13695 opprvalg 13701 reldvdsrsrg 13724 dvdsrex 13730 unitgrp 13748 unitabl 13749 unitlinv 13758 unitrinv 13759 isnzr2 13816 issubrng 13831 issubrg 13853 subrgugrp 13872 aprap 13918 islmod 13923 scaffvalg 13938 lsssetm 13988 islssmg 13990 lspfval 14020 lspval 14022 lspcl 14023 lspex 14027 sraval 14069 rlmvalg 14086 rlmsubg 14090 rlmvnegg 14097 ixpsnbasval 14098 lidlvalg 14103 rspvalg 14104 lidlex 14105 rspex 14106 2idlvalg 14135 zrhvalg 14250 zlmval 14259 toponsspwpwg 14342 eltg 14372 eltg2 14373 restbasg 14488 tgrest 14489 txvalex 14574 txval 14575 ispsmet 14643 ismet 14664 isxmet 14665 xmetunirn 14678 blfvalps 14705 bj-vtoclgft 15505 djucllem 15530 bj-nvel 15627 2omapen 15727 |
| Copyright terms: Public domain | W3C validator |