| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex | GIF version | ||
| Description: If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| elex | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1641 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) → ∃𝑥 𝑥 = 𝐴) | |
| 2 | df-clel 2203 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | isset 2783 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 4 | 1, 2, 3 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: elexi 2789 elexd 2790 elisset 2791 vtoclgft 2828 vtoclgf 2836 vtoclg1f 2837 vtocl2gf 2840 vtocl3gf 2841 spcimgft 2856 spcimegft 2858 elab4g 2929 elrabf 2934 mob 2962 sbcex 3014 sbcel1v 3068 sbcabel 3088 csbcomg 3124 csbvarg 3129 csbiebt 3141 csbnestgf 3154 csbidmg 3158 sbcco3g 3159 csbco3g 3160 eldif 3183 ssv 3223 elun 3322 elin 3364 elif 3591 elpwb 3636 snidb 3673 snssg 3778 dfopg 3831 eluni 3867 eliun 3945 csbexga 4188 nvel 4193 class2seteq 4223 axpweq 4231 snelpwi 4273 opexg 4290 elopab 4322 epelg 4355 elon2 4441 unexg 4508 reuhypd 4536 sucexg 4564 onsucb 4569 onsucelsucr 4574 sucunielr 4576 en2lp 4620 peano2 4661 peano2b 4681 opelvvg 4742 opeliunxp 4748 opeliunxp2 4836 ideqg 4847 elrnmptg 4949 imasng 5066 iniseg 5073 opswapg 5188 elxp4 5189 elxp5 5190 dmmptg 5199 iota2 5280 fnmpt 5422 fvexg 5618 fvelimab 5658 mptfvex 5688 fvmptdf 5690 fvmptdv2 5692 mpteqb 5693 fvmptt 5694 fvmptf 5695 fvopab6 5699 fsn2 5777 fmptpr 5799 eloprabga 6055 ovmpos 6092 ov2gf 6093 ovmpodxf 6094 ovmpox 6097 ovmpoga 6098 ovmpodf 6100 ovi3 6106 ovelrn 6118 suppssfv 6177 suppssov1 6178 offval3 6242 1stexg 6276 2ndexg 6277 elxp6 6278 elxp7 6279 releldm2 6294 fnmpo 6311 mpofvex 6314 mpoexg 6320 opeliunxp2f 6347 brtpos2 6360 rdgtfr 6483 rdgruledefgg 6484 frec0g 6506 sucinc2 6555 nntri3or 6602 relelec 6685 ecdmn0m 6687 mapvalg 6768 pmvalg 6769 elpmg 6774 elixp2 6812 mptelixpg 6844 elixpsn 6845 map1 6928 rex2dom 6934 mapdom1g 6969 mapxpen 6970 fival 7098 elfi2 7100 djulclr 7177 djurclr 7178 djulcl 7179 djurcl 7180 djulclb 7183 inl11 7193 djuss 7198 1stinl 7202 2ndinl 7203 1stinr 7204 2ndinr 7205 ismkvnex 7283 omniwomnimkv 7295 isacnm 7346 cc4n 7418 elinp 7622 addnqprlemfl 7707 addnqprlemfu 7708 mulnqprlemfl 7723 mulnqprlemfu 7724 recexprlemell 7770 recexprlemelu 7771 wrdexg 11042 wrdsymb0 11063 lswwrd 11077 ccatfvalfi 11086 swrdval 11139 swrd00g 11140 pfxval 11165 shftfvalg 11244 clim 11707 climmpt 11726 climshft2 11732 4sqlem2 12827 isstruct2r 12958 slotex 12974 setsvalg 12977 setsfun0 12983 setscom 12987 ressvalsets 13011 ressbasid 13017 restval 13192 topnvalg 13198 tgval 13209 ptex 13211 prdsex 13216 pwsval 13238 pwsbas 13239 pwselbasb 13240 pwssnf1o 13245 imasex 13252 qusex 13272 qusaddvallemg 13280 xpsfrnel2 13293 plusffvalg 13309 grpidvalg 13320 gsum0g 13343 sgrp1 13358 issubmnd 13389 pws0g 13398 issubm 13419 grppropstrg 13466 grpinvfvalg 13489 grpinvfng 13491 grpsubfvalg 13492 grpressid 13508 mulgfvalg 13572 mulgex 13574 mulgfng 13575 issubg 13624 subgex 13627 releqgg 13671 eqgex 13672 eqgfval 13673 isghm 13694 ablressid 13786 mgpvalg 13800 mgptopng 13806 rngressid 13831 rngpropd 13832 ringidvalg 13838 dfur2g 13839 issrg 13842 iscrng2 13892 ringressid 13940 opprvalg 13946 reldvdsrsrg 13969 dvdsrex 13975 unitgrp 13993 unitabl 13994 unitlinv 14003 unitrinv 14004 isnzr2 14061 issubrng 14076 issubrg 14098 subrgugrp 14117 aprap 14163 islmod 14168 scaffvalg 14183 lsssetm 14233 islssmg 14235 lspfval 14265 lspval 14267 lspcl 14268 lspex 14272 sraval 14314 rlmvalg 14331 rlmsubg 14335 rlmvnegg 14342 ixpsnbasval 14343 lidlvalg 14348 rspvalg 14349 lidlex 14350 rspex 14351 2idlvalg 14380 zrhvalg 14495 zlmval 14504 mplvalcoe 14567 mplbascoe 14568 mplplusgg 14580 toponsspwpwg 14609 eltg 14639 eltg2 14640 restbasg 14755 tgrest 14756 txvalex 14841 txval 14842 ispsmet 14910 ismet 14931 isxmet 14932 xmetunirn 14945 blfvalps 14972 vtxvalg 15730 iedgvalg 15731 vtxex 15732 edgvalg 15771 bj-vtoclgft 15911 djucllem 15936 bj-nvel 16032 2omapen 16133 pw1mapen 16135 |
| Copyright terms: Public domain | W3C validator |