Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vprc GIF version

Theorem bj-vprc 11444
Description: vprc 3963 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vprc ¬ V ∈ V

Proof of Theorem bj-vprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-nalset 11443 . . 3 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 2622 . . . . . . 7 𝑦 ∈ V
32tbt 245 . . . . . 6 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1404 . . . . 5 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2082 . . . . 5 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 185 . . . 4 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1541 . . 3 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 630 . 2 ¬ ∃𝑥 𝑥 = V
9 isset 2625 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
108, 9mtbir 631 1 ¬ V ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 103  wal 1287   = wceq 1289  wex 1426  wcel 1438  Vcvv 2619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-ext 2070  ax-bdn 11365  ax-bdel 11369  ax-bdsep 11432
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-v 2621
This theorem is referenced by:  bj-nvel  11445  bj-vnex  11446  bj-intexr  11456  bj-intnexr  11457
  Copyright terms: Public domain W3C validator