Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vprc GIF version

Theorem bj-vprc 16031
Description: vprc 4192 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vprc ¬ V ∈ V

Proof of Theorem bj-vprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-nalset 16030 . . 3 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 2779 . . . . . . 7 𝑦 ∈ V
32tbt 247 . . . . . 6 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1494 . . . . 5 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2201 . . . . 5 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 187 . . . 4 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1629 . . 3 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 672 . 2 ¬ ∃𝑥 𝑥 = V
9 isset 2783 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
108, 9mtbir 673 1 ¬ V ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1371   = wceq 1373  wex 1516  wcel 2178  Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-13 2180  ax-14 2181  ax-ext 2189  ax-bdn 15952  ax-bdel 15956  ax-bdsep 16019
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778
This theorem is referenced by:  bj-nvel  16032  bj-vnex  16033  bj-intexr  16043  bj-intnexr  16044
  Copyright terms: Public domain W3C validator