Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vprc GIF version

Theorem bj-vprc 14919
Description: vprc 4147 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vprc ¬ V ∈ V

Proof of Theorem bj-vprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-nalset 14918 . . 3 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 2752 . . . . . . 7 𝑦 ∈ V
32tbt 247 . . . . . 6 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1480 . . . . 5 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2181 . . . . 5 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 187 . . . 4 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1615 . . 3 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 671 . 2 ¬ ∃𝑥 𝑥 = V
9 isset 2755 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
108, 9mtbir 672 1 ¬ V ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1361   = wceq 1363  wex 1502  wcel 2158  Vcvv 2749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-13 2160  ax-14 2161  ax-ext 2169  ax-bdn 14840  ax-bdel 14844  ax-bdsep 14907
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-v 2751
This theorem is referenced by:  bj-nvel  14920  bj-vnex  14921  bj-intexr  14931  bj-intnexr  14932
  Copyright terms: Public domain W3C validator