| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-vprc | GIF version | ||
| Description: vprc 4176 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vprc | ⊢ ¬ V ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nalset 15831 | . . 3 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
| 2 | vex 2775 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 2 | tbt 247 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
| 4 | 3 | albii 1493 | . . . . 5 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
| 5 | dfcleq 2199 | . . . . 5 ⊢ (𝑥 = V ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) | |
| 6 | 4, 5 | bitr4i 187 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = V) |
| 7 | 6 | exbii 1628 | . . 3 ⊢ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑥 𝑥 = V) |
| 8 | 1, 7 | mtbi 672 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V |
| 9 | isset 2778 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
| 10 | 8, 9 | mtbir 673 | 1 ⊢ ¬ V ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃wex 1515 ∈ wcel 2176 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-13 2178 ax-14 2179 ax-ext 2187 ax-bdn 15753 ax-bdel 15757 ax-bdsep 15820 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: bj-nvel 15833 bj-vnex 15834 bj-intexr 15844 bj-intnexr 15845 |
| Copyright terms: Public domain | W3C validator |