Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vprc GIF version

Theorem bj-vprc 15388
Description: vprc 4161 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vprc ¬ V ∈ V

Proof of Theorem bj-vprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-nalset 15387 . . 3 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 2763 . . . . . . 7 𝑦 ∈ V
32tbt 247 . . . . . 6 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1481 . . . . 5 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2187 . . . . 5 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 187 . . . 4 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1616 . . 3 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 671 . 2 ¬ ∃𝑥 𝑥 = V
9 isset 2766 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
108, 9mtbir 672 1 ¬ V ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1362   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-13 2166  ax-14 2167  ax-ext 2175  ax-bdn 15309  ax-bdel 15313  ax-bdsep 15376
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  bj-nvel  15389  bj-vnex  15390  bj-intexr  15400  bj-intnexr  15401
  Copyright terms: Public domain W3C validator