Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vprc GIF version

Theorem bj-vprc 13265
Description: vprc 4068 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vprc ¬ V ∈ V

Proof of Theorem bj-vprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-nalset 13264 . . 3 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 2692 . . . . . . 7 𝑦 ∈ V
32tbt 246 . . . . . 6 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1447 . . . . 5 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2134 . . . . 5 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 186 . . . 4 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1585 . . 3 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 660 . 2 ¬ ∃𝑥 𝑥 = V
9 isset 2695 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
108, 9mtbir 661 1 ¬ V ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wal 1330   = wceq 1332  wex 1469  wcel 1481  Vcvv 2689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-ext 2122  ax-bdn 13186  ax-bdel 13190  ax-bdsep 13253
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-v 2691
This theorem is referenced by:  bj-nvel  13266  bj-vnex  13267  bj-intexr  13277  bj-intnexr  13278
  Copyright terms: Public domain W3C validator