| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-vprc | GIF version | ||
| Description: vprc 4165 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vprc | ⊢ ¬ V ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nalset 15541 | . . 3 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
| 2 | vex 2766 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 2 | tbt 247 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
| 4 | 3 | albii 1484 | . . . . 5 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
| 5 | dfcleq 2190 | . . . . 5 ⊢ (𝑥 = V ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) | |
| 6 | 4, 5 | bitr4i 187 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = V) |
| 7 | 6 | exbii 1619 | . . 3 ⊢ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑥 𝑥 = V) |
| 8 | 1, 7 | mtbi 671 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V |
| 9 | isset 2769 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
| 10 | 8, 9 | mtbir 672 | 1 ⊢ ¬ V ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-13 2169 ax-14 2170 ax-ext 2178 ax-bdn 15463 ax-bdel 15467 ax-bdsep 15530 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: bj-nvel 15543 bj-vnex 15544 bj-intexr 15554 bj-intnexr 15555 |
| Copyright terms: Public domain | W3C validator |