ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brun GIF version

Theorem brun 4015
Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
Assertion
Ref Expression
brun (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))

Proof of Theorem brun
StepHypRef Expression
1 elun 3248 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∨ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
2 df-br 3966 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆))
3 df-br 3966 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
4 df-br 3966 . . 3 (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆)
53, 4orbi12i 754 . 2 ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∨ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
61, 2, 53bitr4i 211 1 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 698  wcel 2128  cun 3100  cop 3563   class class class wbr 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-br 3966
This theorem is referenced by:  dmun  4790  qfto  4972  poleloe  4982  cnvun  4988  coundi  5084  coundir  5085  brdifun  6500  ltxrlt  7926  ltxr  9664
  Copyright terms: Public domain W3C validator