Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brun | GIF version |
Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
brun | ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3248 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∪ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∨ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 3966 | . 2 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∪ 𝑆)) | |
3 | df-br 3966 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | df-br 3966 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
5 | 3, 4 | orbi12i 754 | . 2 ⊢ ((𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∨ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
6 | 1, 2, 5 | 3bitr4i 211 | 1 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 698 ∈ wcel 2128 ∪ cun 3100 〈cop 3563 class class class wbr 3965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-br 3966 |
This theorem is referenced by: dmun 4790 qfto 4972 poleloe 4982 cnvun 4988 coundi 5084 coundir 5085 brdifun 6500 ltxrlt 7926 ltxr 9664 |
Copyright terms: Public domain | W3C validator |