| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > brun | GIF version | ||
| Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.) | 
| Ref | Expression | 
|---|---|
| brun | ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elun 3304 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∪ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∨ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 4034 | . 2 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∪ 𝑆)) | |
| 3 | df-br 4034 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 4 | df-br 4034 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 5 | 3, 4 | orbi12i 765 | . 2 ⊢ ((𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∨ 〈𝐴, 𝐵〉 ∈ 𝑆)) | 
| 6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∨ wo 709 ∈ wcel 2167 ∪ cun 3155 〈cop 3625 class class class wbr 4033 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-br 4034 | 
| This theorem is referenced by: dmun 4873 qfto 5059 poleloe 5069 cnvun 5075 coundi 5171 coundir 5172 brdifun 6619 ltxrlt 8092 ltxr 9850 | 
| Copyright terms: Public domain | W3C validator |