![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brun | GIF version |
Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
brun | ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3278 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑅 ∪ 𝑆) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∨ ⟨𝐴, 𝐵⟩ ∈ 𝑆)) | |
2 | df-br 4006 | . 2 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅 ∪ 𝑆)) | |
3 | df-br 4006 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅) | |
4 | df-br 4006 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆) | |
5 | 3, 4 | orbi12i 764 | . 2 ⊢ ((𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∨ ⟨𝐴, 𝐵⟩ ∈ 𝑆)) |
6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 708 ∈ wcel 2148 ∪ cun 3129 ⟨cop 3597 class class class wbr 4005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-br 4006 |
This theorem is referenced by: dmun 4836 qfto 5020 poleloe 5030 cnvun 5036 coundi 5132 coundir 5133 brdifun 6564 ltxrlt 8025 ltxr 9777 |
Copyright terms: Public domain | W3C validator |