![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brne0 | GIF version |
Description: If two sets are in a binary relation, the relation cannot be empty. In fact, the relation is also inhabited, as seen at brm 4079. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
Ref | Expression |
---|---|
brne0 | ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4030 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | ne0i 3453 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝑅 ≠ ∅) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ≠ wne 2364 ∅c0 3446 〈cop 3621 class class class wbr 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3155 df-nul 3447 df-br 4030 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |