| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brne0 | GIF version | ||
| Description: If two sets are in a binary relation, the relation cannot be empty. In fact, the relation is also inhabited, as seen at brm 4093. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| brne0 | ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4044 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | ne0i 3466 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝑅 ≠ ∅) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ≠ wne 2375 ∅c0 3459 〈cop 3635 class class class wbr 4043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-v 2773 df-dif 3167 df-nul 3460 df-br 4044 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |