ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brne0 GIF version

Theorem brne0 3985
Description: If two sets are in a binary relation, the relation cannot be empty. In fact, the relation is also inhabited, as seen at brm 3986. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
Assertion
Ref Expression
brne0 (𝐴𝑅𝐵𝑅 ≠ ∅)

Proof of Theorem brne0
StepHypRef Expression
1 df-br 3938 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 ne0i 3374 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅𝑅 ≠ ∅)
31, 2sylbi 120 1 (𝐴𝑅𝐵𝑅 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1481  wne 2309  c0 3368  cop 3535   class class class wbr 3937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-v 2691  df-dif 3078  df-nul 3369  df-br 3938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator