ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brne0 GIF version

Theorem brne0 4031
Description: If two sets are in a binary relation, the relation cannot be empty. In fact, the relation is also inhabited, as seen at brm 4032. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
Assertion
Ref Expression
brne0 (𝐴𝑅𝐵𝑅 ≠ ∅)

Proof of Theorem brne0
StepHypRef Expression
1 df-br 3983 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 ne0i 3415 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅𝑅 ≠ ∅)
31, 2sylbi 120 1 (𝐴𝑅𝐵𝑅 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  wne 2336  c0 3409  cop 3579   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-nul 3410  df-br 3983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator