| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex2 | GIF version | ||
| Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
| Ref | Expression |
|---|---|
| elex2 | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a 2268 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 3 | elisset 2777 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 4 | exim 1613 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥 ∈ 𝐵)) | |
| 5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: snmg 3741 oprcl 3833 brm 4084 ss1o0el1 4231 exss 4261 onintrab2im 4555 regexmidlemm 4569 dmxpid 4888 acexmidlem2 5922 frecabcl 6466 ixpm 6798 enm 6888 ssfilem 6945 fin0 6955 fin0or 6956 diffitest 6957 diffisn 6963 infm 6974 inffiexmid 6976 ctssdc 7188 omct 7192 ctssexmid 7225 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 acnrcl 7286 exmidaclem 7293 caucvgsrlemasr 7876 suplocsrlempr 7893 gtso 8124 sup3exmid 9003 indstr 9686 negm 9708 fzm 10132 fzom 10259 rexfiuz 11173 r19.2uz 11177 resqrexlemgt0 11204 climuni 11477 bezoutlembi 12199 nninfct 12235 lcmgcdlem 12272 pcprecl 12485 pc2dvds 12526 4sqlem13m 12599 nninfdclemcl 12692 dfgrp3m 13303 issubg2m 13397 issubgrpd2 13398 issubg3 13400 issubg4m 13401 grpissubg 13402 subgintm 13406 nmzsubg 13418 ghmrn 13465 ghmpreima 13474 dvdsr02 13739 01eq0ring 13823 subrgugrp 13874 lmodfopnelem1 13958 rmodislmodlem 13984 rmodislmod 13985 lss1 13996 lsssubg 14011 islss3 14013 islss4 14016 lss1d 14017 lssintclm 14018 dflidl2rng 14115 lidlsubg 14120 cnsubglem 14213 tgioo 14898 elply2 15079 pw1nct 15758 nninfall 15764 nnnninfen 15776 |
| Copyright terms: Public domain | W3C validator |