| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex2 | GIF version | ||
| Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
| Ref | Expression |
|---|---|
| elex2 | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a 2301 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1920 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 3 | elisset 2814 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 4 | exim 1645 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥 ∈ 𝐵)) | |
| 5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 = wceq 1395 ∃wex 1538 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: snmg 3784 oprcl 3880 brm 4133 ss1o0el1 4280 exss 4312 onintrab2im 4609 regexmidlemm 4623 reldmm 4941 dmxpid 4944 acexmidlem2 5997 frecabcl 6543 ixpm 6875 en1m 6955 enm 6975 ssfilem 7033 fin0 7043 fin0or 7044 diffitest 7045 diffisn 7051 infm 7062 inffiexmid 7064 ctssdc 7276 omct 7280 ctssexmid 7313 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 acnrcl 7379 exmidaclem 7386 iftrueb01 7404 pw1if 7406 caucvgsrlemasr 7973 suplocsrlempr 7990 gtso 8221 sup3exmid 9100 indstr 9784 negm 9806 fzm 10230 fzom 10357 rexfiuz 11495 r19.2uz 11499 resqrexlemgt0 11526 climuni 11799 bezoutlembi 12521 nninfct 12557 lcmgcdlem 12594 pcprecl 12807 pc2dvds 12848 4sqlem13m 12921 nninfdclemcl 13014 dfgrp3m 13627 issubg2m 13721 issubgrpd2 13722 issubg3 13724 issubg4m 13725 grpissubg 13726 subgintm 13730 nmzsubg 13742 ghmrn 13789 ghmpreima 13798 dvdsr02 14063 01eq0ring 14147 subrgugrp 14198 lmodfopnelem1 14282 rmodislmodlem 14308 rmodislmod 14309 lss1 14320 lsssubg 14335 islss3 14337 islss4 14340 lss1d 14341 lssintclm 14342 dflidl2rng 14439 lidlsubg 14444 cnsubglem 14537 tgioo 15222 elply2 15403 dom1o 16314 pw1nct 16328 nninfall 16334 nnnninfen 16346 |
| Copyright terms: Public domain | W3C validator |