| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex2 | GIF version | ||
| Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
| Ref | Expression |
|---|---|
| elex2 | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a 2278 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1898 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 3 | elisset 2788 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 4 | exim 1623 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥 ∈ 𝐵)) | |
| 5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 = wceq 1373 ∃wex 1516 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: snmg 3756 oprcl 3849 brm 4102 ss1o0el1 4249 exss 4279 onintrab2im 4574 regexmidlemm 4588 dmxpid 4908 acexmidlem2 5954 frecabcl 6498 ixpm 6830 en1m 6910 enm 6930 ssfilem 6987 fin0 6997 fin0or 6998 diffitest 6999 diffisn 7005 infm 7016 inffiexmid 7018 ctssdc 7230 omct 7234 ctssexmid 7267 exmidfodomrlemr 7326 exmidfodomrlemrALT 7327 acnrcl 7329 exmidaclem 7336 iftrueb01 7354 pw1if 7356 caucvgsrlemasr 7923 suplocsrlempr 7940 gtso 8171 sup3exmid 9050 indstr 9734 negm 9756 fzm 10180 fzom 10307 rexfiuz 11375 r19.2uz 11379 resqrexlemgt0 11406 climuni 11679 bezoutlembi 12401 nninfct 12437 lcmgcdlem 12474 pcprecl 12687 pc2dvds 12728 4sqlem13m 12801 nninfdclemcl 12894 dfgrp3m 13506 issubg2m 13600 issubgrpd2 13601 issubg3 13603 issubg4m 13604 grpissubg 13605 subgintm 13609 nmzsubg 13621 ghmrn 13668 ghmpreima 13677 dvdsr02 13942 01eq0ring 14026 subrgugrp 14077 lmodfopnelem1 14161 rmodislmodlem 14187 rmodislmod 14188 lss1 14199 lsssubg 14214 islss3 14216 islss4 14219 lss1d 14220 lssintclm 14221 dflidl2rng 14318 lidlsubg 14323 cnsubglem 14416 tgioo 15101 elply2 15282 dom1o 16067 pw1nct 16081 nninfall 16087 nnnninfen 16099 |
| Copyright terms: Public domain | W3C validator |