| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex2 | GIF version | ||
| Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
| Ref | Expression |
|---|---|
| elex2 | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a 2276 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1896 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 3 | elisset 2785 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 4 | exim 1621 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥 ∈ 𝐵)) | |
| 5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 = wceq 1372 ∃wex 1514 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: snmg 3750 oprcl 3842 brm 4093 ss1o0el1 4240 exss 4270 onintrab2im 4564 regexmidlemm 4578 dmxpid 4897 acexmidlem2 5931 frecabcl 6475 ixpm 6807 enm 6897 ssfilem 6954 fin0 6964 fin0or 6965 diffitest 6966 diffisn 6972 infm 6983 inffiexmid 6985 ctssdc 7197 omct 7201 ctssexmid 7234 exmidfodomrlemr 7292 exmidfodomrlemrALT 7293 acnrcl 7295 exmidaclem 7302 caucvgsrlemasr 7885 suplocsrlempr 7902 gtso 8133 sup3exmid 9012 indstr 9696 negm 9718 fzm 10142 fzom 10269 rexfiuz 11219 r19.2uz 11223 resqrexlemgt0 11250 climuni 11523 bezoutlembi 12245 nninfct 12281 lcmgcdlem 12318 pcprecl 12531 pc2dvds 12572 4sqlem13m 12645 nninfdclemcl 12738 dfgrp3m 13349 issubg2m 13443 issubgrpd2 13444 issubg3 13446 issubg4m 13447 grpissubg 13448 subgintm 13452 nmzsubg 13464 ghmrn 13511 ghmpreima 13520 dvdsr02 13785 01eq0ring 13869 subrgugrp 13920 lmodfopnelem1 14004 rmodislmodlem 14030 rmodislmod 14031 lss1 14042 lsssubg 14057 islss3 14059 islss4 14062 lss1d 14063 lssintclm 14064 dflidl2rng 14161 lidlsubg 14166 cnsubglem 14259 tgioo 14944 elply2 15125 pw1nct 15804 nninfall 15810 nnnninfen 15822 |
| Copyright terms: Public domain | W3C validator |