| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elex2 | GIF version | ||
| Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
| Ref | Expression |
|---|---|
| elex2 | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a 2276 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1896 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 3 | elisset 2785 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 4 | exim 1621 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥 ∈ 𝐵)) | |
| 5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 = wceq 1372 ∃wex 1514 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: snmg 3750 oprcl 3842 brm 4093 ss1o0el1 4240 exss 4270 onintrab2im 4565 regexmidlemm 4579 dmxpid 4898 acexmidlem2 5940 frecabcl 6484 ixpm 6816 enm 6914 ssfilem 6971 fin0 6981 fin0or 6982 diffitest 6983 diffisn 6989 infm 7000 inffiexmid 7002 ctssdc 7214 omct 7218 ctssexmid 7251 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 acnrcl 7312 exmidaclem 7319 caucvgsrlemasr 7902 suplocsrlempr 7919 gtso 8150 sup3exmid 9029 indstr 9713 negm 9735 fzm 10159 fzom 10286 rexfiuz 11242 r19.2uz 11246 resqrexlemgt0 11273 climuni 11546 bezoutlembi 12268 nninfct 12304 lcmgcdlem 12341 pcprecl 12554 pc2dvds 12595 4sqlem13m 12668 nninfdclemcl 12761 dfgrp3m 13373 issubg2m 13467 issubgrpd2 13468 issubg3 13470 issubg4m 13471 grpissubg 13472 subgintm 13476 nmzsubg 13488 ghmrn 13535 ghmpreima 13544 dvdsr02 13809 01eq0ring 13893 subrgugrp 13944 lmodfopnelem1 14028 rmodislmodlem 14054 rmodislmod 14055 lss1 14066 lsssubg 14081 islss3 14083 islss4 14086 lss1d 14087 lssintclm 14088 dflidl2rng 14185 lidlsubg 14190 cnsubglem 14283 tgioo 14968 elply2 15149 pw1nct 15873 nninfall 15879 nnnninfen 15891 |
| Copyright terms: Public domain | W3C validator |