| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elex2 | GIF version | ||
| Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| elex2 | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1a 2268 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | 
| 3 | elisset 2777 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 4 | exim 1613 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥 ∈ 𝐵)) | |
| 5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: snmg 3740 oprcl 3832 brm 4083 ss1o0el1 4230 exss 4260 onintrab2im 4554 regexmidlemm 4568 dmxpid 4887 acexmidlem2 5919 frecabcl 6457 ixpm 6789 enm 6879 ssfilem 6936 fin0 6946 fin0or 6947 diffitest 6948 diffisn 6954 infm 6965 inffiexmid 6967 ctssdc 7179 omct 7183 ctssexmid 7216 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 exmidaclem 7275 caucvgsrlemasr 7857 suplocsrlempr 7874 gtso 8105 sup3exmid 8984 indstr 9667 negm 9689 fzm 10113 fzom 10240 rexfiuz 11154 r19.2uz 11158 resqrexlemgt0 11185 climuni 11458 bezoutlembi 12172 nninfct 12208 lcmgcdlem 12245 pcprecl 12458 pc2dvds 12499 4sqlem13m 12572 nninfdclemcl 12665 dfgrp3m 13231 issubg2m 13319 issubgrpd2 13320 issubg3 13322 issubg4m 13323 grpissubg 13324 subgintm 13328 nmzsubg 13340 ghmrn 13387 ghmpreima 13396 dvdsr02 13661 01eq0ring 13745 subrgugrp 13796 lmodfopnelem1 13880 rmodislmodlem 13906 rmodislmod 13907 lss1 13918 lsssubg 13933 islss3 13935 islss4 13938 lss1d 13939 lssintclm 13940 dflidl2rng 14037 lidlsubg 14042 cnsubglem 14135 tgioo 14790 elply2 14971 pw1nct 15647 nninfall 15653 nnnninfen 15665 | 
| Copyright terms: Public domain | W3C validator |