Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elex2 | GIF version |
Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
Ref | Expression |
---|---|
elex2 | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1a 2242 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | alrimiv 1867 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
3 | elisset 2744 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
4 | exim 1592 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥 ∈ 𝐵)) | |
5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 = wceq 1348 ∃wex 1485 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: snmg 3699 oprcl 3787 brm 4037 ss1o0el1 4181 exss 4210 onintrab2im 4500 regexmidlemm 4514 dmxpid 4830 acexmidlem2 5848 frecabcl 6376 ixpm 6706 enm 6796 ssfilem 6851 fin0 6861 fin0or 6862 diffitest 6863 diffisn 6869 infm 6880 inffiexmid 6882 ctssdc 7088 omct 7092 ctssexmid 7124 exmidfodomrlemr 7172 exmidfodomrlemrALT 7173 exmidaclem 7178 caucvgsrlemasr 7745 suplocsrlempr 7762 gtso 7991 sup3exmid 8866 indstr 9545 negm 9567 fzm 9987 fzom 10113 rexfiuz 10946 r19.2uz 10950 resqrexlemgt0 10977 climuni 11249 bezoutlembi 11953 lcmgcdlem 12024 pcprecl 12236 pc2dvds 12276 nninfdclemcl 12396 tgioo 13305 pw1nct 14001 nninfall 14007 |
Copyright terms: Public domain | W3C validator |