Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elex2 | GIF version |
Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
Ref | Expression |
---|---|
elex2 | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1a 2238 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | alrimiv 1862 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
3 | elisset 2740 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
4 | exim 1587 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥 ∈ 𝐵)) | |
5 | 2, 3, 4 | sylc 62 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 = wceq 1343 ∃wex 1480 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: snmg 3694 oprcl 3782 brm 4032 ss1o0el1 4176 exss 4205 onintrab2im 4495 regexmidlemm 4509 dmxpid 4825 acexmidlem2 5839 frecabcl 6367 ixpm 6696 enm 6786 ssfilem 6841 fin0 6851 fin0or 6852 diffitest 6853 diffisn 6859 infm 6870 inffiexmid 6872 ctssdc 7078 omct 7082 ctssexmid 7114 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 exmidaclem 7164 caucvgsrlemasr 7731 suplocsrlempr 7748 gtso 7977 sup3exmid 8852 indstr 9531 negm 9553 fzm 9973 fzom 10099 rexfiuz 10931 r19.2uz 10935 resqrexlemgt0 10962 climuni 11234 bezoutlembi 11938 lcmgcdlem 12009 pcprecl 12221 pc2dvds 12261 nninfdclemcl 12381 tgioo 13186 pw1nct 13883 nninfall 13889 |
Copyright terms: Public domain | W3C validator |