Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abbidv | GIF version |
Description: Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 10-Aug-1993.) |
Ref | Expression |
---|---|
abbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
abbidv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | abbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | abbid 2274 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Copyright terms: Public domain | W3C validator |