Proof of Theorem ceqsex4v
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 19.42vv 1926 | 
. . . 4
⊢
(∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑)) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) | 
| 2 |   | 3anass 984 | 
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑))) | 
| 3 |   | df-3an 982 | 
. . . . . . 7
⊢ ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑) ↔ ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑)) | 
| 4 | 3 | anbi2i 457 | 
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑)) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑))) | 
| 5 | 2, 4 | bitr4i 187 | 
. . . . 5
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) | 
| 6 | 5 | 2exbii 1620 | 
. . . 4
⊢
(∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ ∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) | 
| 7 |   | df-3an 982 | 
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑)) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) | 
| 8 | 1, 6, 7 | 3bitr4i 212 | 
. . 3
⊢
(∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) | 
| 9 | 8 | 2exbii 1620 | 
. 2
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) | 
| 10 |   | ceqsex4v.1 | 
. . 3
⊢ 𝐴 ∈ V | 
| 11 |   | ceqsex4v.2 | 
. . 3
⊢ 𝐵 ∈ V | 
| 12 |   | ceqsex4v.7 | 
. . . . 5
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| 13 | 12 | 3anbi3d 1329 | 
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑) ↔ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓))) | 
| 14 | 13 | 2exbidv 1882 | 
. . 3
⊢ (𝑥 = 𝐴 → (∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑) ↔ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓))) | 
| 15 |   | ceqsex4v.8 | 
. . . . 5
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| 16 | 15 | 3anbi3d 1329 | 
. . . 4
⊢ (𝑦 = 𝐵 → ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓) ↔ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒))) | 
| 17 | 16 | 2exbidv 1882 | 
. . 3
⊢ (𝑦 = 𝐵 → (∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓) ↔ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒))) | 
| 18 | 10, 11, 14, 17 | ceqsex2v 2805 | 
. 2
⊢
(∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑)) ↔ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒)) | 
| 19 |   | ceqsex4v.3 | 
. . 3
⊢ 𝐶 ∈ V | 
| 20 |   | ceqsex4v.4 | 
. . 3
⊢ 𝐷 ∈ V | 
| 21 |   | ceqsex4v.9 | 
. . 3
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | 
| 22 |   | ceqsex4v.10 | 
. . 3
⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) | 
| 23 | 19, 20, 21, 22 | ceqsex2v 2805 | 
. 2
⊢
(∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒) ↔ 𝜏) | 
| 24 | 9, 18, 23 | 3bitri 206 | 
1
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ 𝜏) |