Proof of Theorem ceqsex3v
| Step | Hyp | Ref
 | Expression | 
| 1 |   | anass 401 | 
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑))) | 
| 2 |   | 3anass 984 | 
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶))) | 
| 3 | 2 | anbi1i 458 | 
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ ((𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) ∧ 𝜑)) | 
| 4 |   | df-3an 982 | 
. . . . . . 7
⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑) ↔ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑)) | 
| 5 | 4 | anbi2i 457 | 
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑))) | 
| 6 | 1, 3, 5 | 3bitr4i 212 | 
. . . . 5
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) | 
| 7 | 6 | 2exbii 1620 | 
. . . 4
⊢
(∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ ∃𝑦∃𝑧(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) | 
| 8 |   | 19.42vv 1926 | 
. . . 4
⊢
(∃𝑦∃𝑧(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) | 
| 9 | 7, 8 | bitri 184 | 
. . 3
⊢
(∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) | 
| 10 | 9 | exbii 1619 | 
. 2
⊢
(∃𝑥∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑))) | 
| 11 |   | ceqsex3v.1 | 
. . . 4
⊢ 𝐴 ∈ V | 
| 12 |   | ceqsex3v.4 | 
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| 13 | 12 | 3anbi3d 1329 | 
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑) ↔ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓))) | 
| 14 | 13 | 2exbidv 1882 | 
. . . 4
⊢ (𝑥 = 𝐴 → (∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑) ↔ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓))) | 
| 15 | 11, 14 | ceqsexv 2802 | 
. . 3
⊢
(∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑)) ↔ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓)) | 
| 16 |   | ceqsex3v.2 | 
. . . 4
⊢ 𝐵 ∈ V | 
| 17 |   | ceqsex3v.3 | 
. . . 4
⊢ 𝐶 ∈ V | 
| 18 |   | ceqsex3v.5 | 
. . . 4
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| 19 |   | ceqsex3v.6 | 
. . . 4
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | 
| 20 | 16, 17, 18, 19 | ceqsex2v 2805 | 
. . 3
⊢
(∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓) ↔ 𝜃) | 
| 21 | 15, 20 | bitri 184 | 
. 2
⊢
(∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦∃𝑧(𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑)) ↔ 𝜃) | 
| 22 | 10, 21 | bitri 184 | 
1
⊢
(∃𝑥∃𝑦∃𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ∧ 𝜑) ↔ 𝜃) |