ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsex2 GIF version

Theorem ceqsex2 2778
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
Hypotheses
Ref Expression
ceqsex2.1 𝑥𝜓
ceqsex2.2 𝑦𝜒
ceqsex2.3 𝐴 ∈ V
ceqsex2.4 𝐵 ∈ V
ceqsex2.5 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsex2.6 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ceqsex2 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem ceqsex2
StepHypRef Expression
1 3anass 982 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
21exbii 1605 . . . 4 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ ∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
3 19.42v 1906 . . . 4 (∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
42, 3bitri 184 . . 3 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
54exbii 1605 . 2 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
6 nfv 1528 . . . . 5 𝑥 𝑦 = 𝐵
7 ceqsex2.1 . . . . 5 𝑥𝜓
86, 7nfan 1565 . . . 4 𝑥(𝑦 = 𝐵𝜓)
98nfex 1637 . . 3 𝑥𝑦(𝑦 = 𝐵𝜓)
10 ceqsex2.3 . . 3 𝐴 ∈ V
11 ceqsex2.5 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
1211anbi2d 464 . . . 4 (𝑥 = 𝐴 → ((𝑦 = 𝐵𝜑) ↔ (𝑦 = 𝐵𝜓)))
1312exbidv 1825 . . 3 (𝑥 = 𝐴 → (∃𝑦(𝑦 = 𝐵𝜑) ↔ ∃𝑦(𝑦 = 𝐵𝜓)))
149, 10, 13ceqsex 2776 . 2 (∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)) ↔ ∃𝑦(𝑦 = 𝐵𝜓))
15 ceqsex2.2 . . 3 𝑦𝜒
16 ceqsex2.4 . . 3 𝐵 ∈ V
17 ceqsex2.6 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
1815, 16, 17ceqsex 2776 . 2 (∃𝑦(𝑦 = 𝐵𝜓) ↔ 𝜒)
195, 14, 183bitri 206 1 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wnf 1460  wex 1492  wcel 2148  Vcvv 2738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2740
This theorem is referenced by:  ceqsex2v  2779
  Copyright terms: Public domain W3C validator