ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsex2 GIF version

Theorem ceqsex2 2766
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
Hypotheses
Ref Expression
ceqsex2.1 𝑥𝜓
ceqsex2.2 𝑦𝜒
ceqsex2.3 𝐴 ∈ V
ceqsex2.4 𝐵 ∈ V
ceqsex2.5 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsex2.6 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ceqsex2 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem ceqsex2
StepHypRef Expression
1 3anass 972 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
21exbii 1593 . . . 4 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ ∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
3 19.42v 1894 . . . 4 (∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
42, 3bitri 183 . . 3 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
54exbii 1593 . 2 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
6 nfv 1516 . . . . 5 𝑥 𝑦 = 𝐵
7 ceqsex2.1 . . . . 5 𝑥𝜓
86, 7nfan 1553 . . . 4 𝑥(𝑦 = 𝐵𝜓)
98nfex 1625 . . 3 𝑥𝑦(𝑦 = 𝐵𝜓)
10 ceqsex2.3 . . 3 𝐴 ∈ V
11 ceqsex2.5 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
1211anbi2d 460 . . . 4 (𝑥 = 𝐴 → ((𝑦 = 𝐵𝜑) ↔ (𝑦 = 𝐵𝜓)))
1312exbidv 1813 . . 3 (𝑥 = 𝐴 → (∃𝑦(𝑦 = 𝐵𝜑) ↔ ∃𝑦(𝑦 = 𝐵𝜓)))
149, 10, 13ceqsex 2764 . 2 (∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)) ↔ ∃𝑦(𝑦 = 𝐵𝜓))
15 ceqsex2.2 . . 3 𝑦𝜒
16 ceqsex2.4 . . 3 𝐵 ∈ V
17 ceqsex2.6 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
1815, 16, 17ceqsex 2764 . 2 (∃𝑦(𝑦 = 𝐵𝜓) ↔ 𝜒)
195, 14, 183bitri 205 1 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wnf 1448  wex 1480  wcel 2136  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  ceqsex2v  2767
  Copyright terms: Public domain W3C validator