ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd GIF version

Theorem intnanrd 933
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnanrd (𝜑 → ¬ (𝜓𝜒))

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpl 109 . 2 ((𝜓𝜒) → 𝜓)
31, 2nsyl 629 1 (𝜑 → ¬ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  934  bianfd  950  3bior1fand  1364  frecabcl  6475  frecsuclem  6482  xrrebnd  9923  fzpreddisj  10175  iseqf1olemqk  10633  gcdsupex  12197  gcdsupcl  12198  nndvdslegcd  12205  divgcdnn  12215  sqgcd  12269  coprm  12385  pclemdc  12530  1arith  12609  ctiunctlemudc  12727  gsum0g  13146  gsumval2  13147  lgsval2lem  15405  lgsval4a  15417  lgsdilem  15422
  Copyright terms: Public domain W3C validator