![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnanrd | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
This theorem is referenced by: dcand 934 bianfd 950 frecabcl 6454 frecsuclem 6461 xrrebnd 9888 fzpreddisj 10140 iseqf1olemqk 10581 gcdsupex 12097 gcdsupcl 12098 nndvdslegcd 12105 divgcdnn 12115 sqgcd 12169 coprm 12285 pclemdc 12429 1arith 12508 ctiunctlemudc 12597 gsum0g 12982 gsumval2 12983 lgsval2lem 15167 lgsval4a 15179 lgsdilem 15184 |
Copyright terms: Public domain | W3C validator |