Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intnanrd | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 108 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 623 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-in1 609 ax-in2 610 |
This theorem is referenced by: dcan 928 bianfd 943 frecabcl 6378 frecsuclem 6385 xrrebnd 9776 fzpreddisj 10027 iseqf1olemqk 10450 gcdsupex 11912 gcdsupcl 11913 nndvdslegcd 11920 divgcdnn 11930 sqgcd 11984 coprm 12098 pclemdc 12242 1arith 12319 ctiunctlemudc 12392 lgsval2lem 13705 lgsval4a 13717 lgsdilem 13722 |
Copyright terms: Public domain | W3C validator |