![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnanrd | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 628 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 614 ax-in2 615 |
This theorem is referenced by: dcan 933 bianfd 948 frecabcl 6400 frecsuclem 6407 xrrebnd 9819 fzpreddisj 10071 iseqf1olemqk 10494 gcdsupex 11958 gcdsupcl 11959 nndvdslegcd 11966 divgcdnn 11976 sqgcd 12030 coprm 12144 pclemdc 12288 1arith 12365 ctiunctlemudc 12438 lgsval2lem 14414 lgsval4a 14426 lgsdilem 14431 |
Copyright terms: Public domain | W3C validator |