![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnanrd | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
This theorem is referenced by: dcand 934 bianfd 950 frecabcl 6452 frecsuclem 6459 xrrebnd 9885 fzpreddisj 10137 iseqf1olemqk 10578 gcdsupex 12094 gcdsupcl 12095 nndvdslegcd 12102 divgcdnn 12112 sqgcd 12166 coprm 12282 pclemdc 12426 1arith 12505 ctiunctlemudc 12594 gsum0g 12979 gsumval2 12980 lgsval2lem 15126 lgsval4a 15138 lgsdilem 15143 |
Copyright terms: Public domain | W3C validator |