ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd GIF version

Theorem intnanrd 934
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnanrd (𝜑 → ¬ (𝜓𝜒))

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpl 109 . 2 ((𝜓𝜒) → 𝜓)
31, 2nsyl 629 1 (𝜑 → ¬ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  935  bianfd  951  3bior1fand  1365  frecabcl  6498  frecsuclem  6505  xrrebnd  9961  fzpreddisj  10213  iseqf1olemqk  10674  gcdsupex  12353  gcdsupcl  12354  nndvdslegcd  12361  divgcdnn  12371  sqgcd  12425  coprm  12541  pclemdc  12686  1arith  12765  ctiunctlemudc  12883  gsum0g  13303  gsumval2  13304  lgsval2lem  15562  lgsval4a  15574  lgsdilem  15579
  Copyright terms: Public domain W3C validator