ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd GIF version

Theorem intnanrd 937
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnanrd (𝜑 → ¬ (𝜓𝜒))

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpl 109 . 2 ((𝜓𝜒) → 𝜓)
31, 2nsyl 631 1 (𝜑 → ¬ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 617  ax-in2 618
This theorem is referenced by:  dcand  938  bianfd  954  3bior1fand  1387  frecabcl  6543  frecsuclem  6550  xrrebnd  10011  fzpreddisj  10263  iseqf1olemqk  10724  gcdsupex  12473  gcdsupcl  12474  nndvdslegcd  12481  divgcdnn  12491  sqgcd  12545  coprm  12661  pclemdc  12806  1arith  12885  ctiunctlemudc  13003  gsum0g  13424  gsumval2  13425  lgsval2lem  15683  lgsval4a  15695  lgsdilem  15700
  Copyright terms: Public domain W3C validator