| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanrd | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 934 bianfd 950 3bior1fand 1364 frecabcl 6475 frecsuclem 6482 xrrebnd 9923 fzpreddisj 10175 iseqf1olemqk 10633 gcdsupex 12197 gcdsupcl 12198 nndvdslegcd 12205 divgcdnn 12215 sqgcd 12269 coprm 12385 pclemdc 12530 1arith 12609 ctiunctlemudc 12727 gsum0g 13146 gsumval2 13147 lgsval2lem 15405 lgsval4a 15417 lgsdilem 15422 |
| Copyright terms: Public domain | W3C validator |