| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanrd | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 934 bianfd 950 frecabcl 6466 frecsuclem 6473 xrrebnd 9913 fzpreddisj 10165 iseqf1olemqk 10618 gcdsupex 12151 gcdsupcl 12152 nndvdslegcd 12159 divgcdnn 12169 sqgcd 12223 coprm 12339 pclemdc 12484 1arith 12563 ctiunctlemudc 12681 gsum0g 13100 gsumval2 13101 lgsval2lem 15359 lgsval4a 15371 lgsdilem 15376 |
| Copyright terms: Public domain | W3C validator |