ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd GIF version

Theorem intnanrd 918
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnanrd (𝜑 → ¬ (𝜓𝜒))

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpl 108 . 2 ((𝜓𝜒) → 𝜓)
31, 2nsyl 618 1 (𝜑 → ¬ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 604  ax-in2 605
This theorem is referenced by:  dcan  919  bianfd  933  frecabcl  6346  frecsuclem  6353  xrrebnd  9723  fzpreddisj  9973  iseqf1olemqk  10393  gcdsupex  11841  gcdsupcl  11842  nndvdslegcd  11849  divgcdnn  11859  sqgcd  11913  coprm  12019  ctiunctlemudc  12177
  Copyright terms: Public domain W3C validator