ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd GIF version

Theorem intnanrd 932
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnanrd (𝜑 → ¬ (𝜓𝜒))

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpl 109 . 2 ((𝜓𝜒) → 𝜓)
31, 2nsyl 628 1 (𝜑 → ¬ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 614  ax-in2 615
This theorem is referenced by:  dcan  933  bianfd  948  frecabcl  6402  frecsuclem  6409  xrrebnd  9821  fzpreddisj  10073  iseqf1olemqk  10496  gcdsupex  11960  gcdsupcl  11961  nndvdslegcd  11968  divgcdnn  11978  sqgcd  12032  coprm  12146  pclemdc  12290  1arith  12367  ctiunctlemudc  12440  lgsval2lem  14496  lgsval4a  14508  lgsdilem  14513
  Copyright terms: Public domain W3C validator