ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd GIF version

Theorem intnanrd 922
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnanrd (𝜑 → ¬ (𝜓𝜒))

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpl 108 . 2 ((𝜓𝜒) → 𝜓)
31, 2nsyl 618 1 (𝜑 → ¬ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 604  ax-in2 605
This theorem is referenced by:  dcan  923  bianfd  938  frecabcl  6363  frecsuclem  6370  xrrebnd  9751  fzpreddisj  10002  iseqf1olemqk  10425  gcdsupex  11886  gcdsupcl  11887  nndvdslegcd  11894  divgcdnn  11904  sqgcd  11958  coprm  12072  pclemdc  12216  1arith  12293  ctiunctlemudc  12366  lgsval2lem  13511  lgsval4a  13523  lgsdilem  13528
  Copyright terms: Public domain W3C validator