| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanrd | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | nsyl 631 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: dcand 938 bianfd 954 3bior1fand 1387 frecabcl 6543 frecsuclem 6550 xrrebnd 10011 fzpreddisj 10263 iseqf1olemqk 10724 gcdsupex 12473 gcdsupcl 12474 nndvdslegcd 12481 divgcdnn 12491 sqgcd 12545 coprm 12661 pclemdc 12806 1arith 12885 ctiunctlemudc 13003 gsum0g 13424 gsumval2 13425 lgsval2lem 15683 lgsval4a 15695 lgsdilem 15700 |
| Copyright terms: Public domain | W3C validator |