Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intnanrd | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 108 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 618 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-in1 604 ax-in2 605 |
This theorem is referenced by: dcan 923 bianfd 938 frecabcl 6363 frecsuclem 6370 xrrebnd 9751 fzpreddisj 10002 iseqf1olemqk 10425 gcdsupex 11886 gcdsupcl 11887 nndvdslegcd 11894 divgcdnn 11904 sqgcd 11958 coprm 12072 pclemdc 12216 1arith 12293 ctiunctlemudc 12366 lgsval2lem 13511 lgsval4a 13523 lgsdilem 13528 |
Copyright terms: Public domain | W3C validator |