ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd GIF version

Theorem intnanrd 933
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnanrd (𝜑 → ¬ (𝜓𝜒))

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpl 109 . 2 ((𝜓𝜒) → 𝜓)
31, 2nsyl 629 1 (𝜑 → ¬ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  934  bianfd  950  frecabcl  6466  frecsuclem  6473  xrrebnd  9913  fzpreddisj  10165  iseqf1olemqk  10618  gcdsupex  12151  gcdsupcl  12152  nndvdslegcd  12159  divgcdnn  12169  sqgcd  12223  coprm  12339  pclemdc  12484  1arith  12563  ctiunctlemudc  12681  gsum0g  13100  gsumval2  13101  lgsval2lem  15359  lgsval4a  15371  lgsdilem  15376
  Copyright terms: Public domain W3C validator