ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd GIF version

Theorem intnanrd 933
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnanrd (𝜑 → ¬ (𝜓𝜒))

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpl 109 . 2 ((𝜓𝜒) → 𝜓)
31, 2nsyl 629 1 (𝜑 → ¬ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  934  bianfd  950  frecabcl  6457  frecsuclem  6464  xrrebnd  9894  fzpreddisj  10146  iseqf1olemqk  10599  gcdsupex  12124  gcdsupcl  12125  nndvdslegcd  12132  divgcdnn  12142  sqgcd  12196  coprm  12312  pclemdc  12457  1arith  12536  ctiunctlemudc  12654  gsum0g  13039  gsumval2  13040  lgsval2lem  15251  lgsval4a  15263  lgsdilem  15268
  Copyright terms: Public domain W3C validator