| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanrd | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 935 bianfd 951 3bior1fand 1365 frecabcl 6498 frecsuclem 6505 xrrebnd 9961 fzpreddisj 10213 iseqf1olemqk 10674 gcdsupex 12353 gcdsupcl 12354 nndvdslegcd 12361 divgcdnn 12371 sqgcd 12425 coprm 12541 pclemdc 12686 1arith 12765 ctiunctlemudc 12883 gsum0g 13303 gsumval2 13304 lgsval2lem 15562 lgsval4a 15574 lgsdilem 15579 |
| Copyright terms: Public domain | W3C validator |