![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnand | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
This theorem is referenced by: dcan 934 poxp 6246 cauappcvgprlemladdrl 7669 caucvgprlemladdrl 7690 xrrebnd 9832 fzpreddisj 10084 fzp1nel 10117 fprodntrivap 11605 gcdsupex 11971 gcdsupcl 11972 gcdnncl 11981 gcd2n0cl 11983 qredeu 12110 cncongr2 12117 divnumden 12209 divdenle 12210 phisum 12253 pythagtriplem4 12281 pythagtriplem8 12285 pythagtriplem9 12286 isnsgrp 12830 ivthinclemdisj 14389 lgsneg 14696 |
Copyright terms: Public domain | W3C validator |