| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnand | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 934 poxp 6299 cauappcvgprlemladdrl 7741 caucvgprlemladdrl 7762 xrrebnd 9911 fzpreddisj 10163 fzp1nel 10196 fprodntrivap 11766 bitsfzo 12137 bitsmod 12138 gcdsupex 12149 gcdsupcl 12150 gcdnncl 12159 gcd2n0cl 12161 qredeu 12290 cncongr2 12297 divnumden 12389 divdenle 12390 phisum 12434 pythagtriplem4 12462 pythagtriplem8 12466 pythagtriplem9 12467 isnsgrp 13108 ivthinclemdisj 14960 lgsneg 15349 |
| Copyright terms: Public domain | W3C validator |