| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnand | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 934 poxp 6299 cauappcvgprlemladdrl 7743 caucvgprlemladdrl 7764 xrrebnd 9913 fzpreddisj 10165 fzp1nel 10198 fprodntrivap 11768 bitsfzo 12139 bitsmod 12140 gcdsupex 12151 gcdsupcl 12152 gcdnncl 12161 gcd2n0cl 12163 qredeu 12292 cncongr2 12299 divnumden 12391 divdenle 12392 phisum 12436 pythagtriplem4 12464 pythagtriplem8 12468 pythagtriplem9 12469 isnsgrp 13110 ivthinclemdisj 14962 lgsneg 15351 |
| Copyright terms: Public domain | W3C validator |