Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intnand | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpr 109 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | nsyl 618 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-in1 604 ax-in2 605 |
This theorem is referenced by: dcan 919 poxp 6176 cauappcvgprlemladdrl 7571 caucvgprlemladdrl 7592 xrrebnd 9716 fzpreddisj 9966 fzp1nel 9999 fprodntrivap 11474 gcdsupex 11832 gcdsupcl 11833 gcdnncl 11842 gcd2n0cl 11844 qredeu 11965 cncongr2 11972 divnumden 12061 divdenle 12062 phisum 12103 ivthinclemdisj 12989 |
Copyright terms: Public domain | W3C validator |