ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnand GIF version

Theorem intnand 932
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnand (𝜑 → ¬ (𝜒𝜓))

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpr 110 . 2 ((𝜒𝜓) → 𝜓)
31, 2nsyl 629 1 (𝜑 → ¬ (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcan  934  poxp  6246  cauappcvgprlemladdrl  7669  caucvgprlemladdrl  7690  xrrebnd  9832  fzpreddisj  10084  fzp1nel  10117  fprodntrivap  11605  gcdsupex  11971  gcdsupcl  11972  gcdnncl  11981  gcd2n0cl  11983  qredeu  12110  cncongr2  12117  divnumden  12209  divdenle  12210  phisum  12253  pythagtriplem4  12281  pythagtriplem8  12285  pythagtriplem9  12286  isnsgrp  12830  ivthinclemdisj  14389  lgsneg  14696
  Copyright terms: Public domain W3C validator