ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnand GIF version

Theorem intnand 933
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnand (𝜑 → ¬ (𝜒𝜓))

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpr 110 . 2 ((𝜒𝜓) → 𝜓)
31, 2nsyl 629 1 (𝜑 → ¬ (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  935  poxp  6336  cauappcvgprlemladdrl  7800  caucvgprlemladdrl  7821  xrrebnd  9971  fzpreddisj  10223  fzp1nel  10256  fprodntrivap  11980  bitsfzo  12351  bitsmod  12352  gcdsupex  12363  gcdsupcl  12364  gcdnncl  12373  gcd2n0cl  12375  qredeu  12504  cncongr2  12511  divnumden  12603  divdenle  12604  phisum  12648  pythagtriplem4  12676  pythagtriplem8  12680  pythagtriplem9  12681  isnsgrp  13323  ivthinclemdisj  15197  lgsneg  15586  umgredgnlp  15826
  Copyright terms: Public domain W3C validator