| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnand | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 934 poxp 6290 cauappcvgprlemladdrl 7724 caucvgprlemladdrl 7745 xrrebnd 9894 fzpreddisj 10146 fzp1nel 10179 fprodntrivap 11749 bitsfzo 12119 gcdsupex 12124 gcdsupcl 12125 gcdnncl 12134 gcd2n0cl 12136 qredeu 12265 cncongr2 12272 divnumden 12364 divdenle 12365 phisum 12409 pythagtriplem4 12437 pythagtriplem8 12441 pythagtriplem9 12442 isnsgrp 13049 ivthinclemdisj 14876 lgsneg 15265 |
| Copyright terms: Public domain | W3C validator |