| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnand | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 935 poxp 6336 cauappcvgprlemladdrl 7800 caucvgprlemladdrl 7821 xrrebnd 9971 fzpreddisj 10223 fzp1nel 10256 fprodntrivap 11980 bitsfzo 12351 bitsmod 12352 gcdsupex 12363 gcdsupcl 12364 gcdnncl 12373 gcd2n0cl 12375 qredeu 12504 cncongr2 12511 divnumden 12603 divdenle 12604 phisum 12648 pythagtriplem4 12676 pythagtriplem8 12680 pythagtriplem9 12681 isnsgrp 13323 ivthinclemdisj 15197 lgsneg 15586 umgredgnlp 15826 |
| Copyright terms: Public domain | W3C validator |