ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnand GIF version

Theorem intnand 932
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnand (𝜑 → ¬ (𝜒𝜓))

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpr 110 . 2 ((𝜒𝜓) → 𝜓)
31, 2nsyl 629 1 (𝜑 → ¬ (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  934  poxp  6252  cauappcvgprlemladdrl  7676  caucvgprlemladdrl  7697  xrrebnd  9839  fzpreddisj  10091  fzp1nel  10124  fprodntrivap  11612  gcdsupex  11978  gcdsupcl  11979  gcdnncl  11988  gcd2n0cl  11990  qredeu  12117  cncongr2  12124  divnumden  12216  divdenle  12217  phisum  12260  pythagtriplem4  12288  pythagtriplem8  12292  pythagtriplem9  12293  isnsgrp  12842  ivthinclemdisj  14522  lgsneg  14829
  Copyright terms: Public domain W3C validator