![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnand | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | nsyl 628 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 614 ax-in2 615 |
This theorem is referenced by: dcan 933 poxp 6235 cauappcvgprlemladdrl 7658 caucvgprlemladdrl 7679 xrrebnd 9821 fzpreddisj 10073 fzp1nel 10106 fprodntrivap 11594 gcdsupex 11960 gcdsupcl 11961 gcdnncl 11970 gcd2n0cl 11972 qredeu 12099 cncongr2 12106 divnumden 12198 divdenle 12199 phisum 12242 pythagtriplem4 12270 pythagtriplem8 12274 pythagtriplem9 12275 isnsgrp 12817 ivthinclemdisj 14157 lgsneg 14464 |
Copyright terms: Public domain | W3C validator |