Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intnand | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpr 109 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | nsyl 623 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-in1 609 ax-in2 610 |
This theorem is referenced by: dcan 928 poxp 6211 cauappcvgprlemladdrl 7619 caucvgprlemladdrl 7640 xrrebnd 9776 fzpreddisj 10027 fzp1nel 10060 fprodntrivap 11547 gcdsupex 11912 gcdsupcl 11913 gcdnncl 11922 gcd2n0cl 11924 qredeu 12051 cncongr2 12058 divnumden 12150 divdenle 12151 phisum 12194 pythagtriplem4 12222 pythagtriplem8 12226 pythagtriplem9 12227 isnsgrp 12647 ivthinclemdisj 13412 lgsneg 13719 |
Copyright terms: Public domain | W3C validator |