ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnand GIF version

Theorem intnand 921
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnand (𝜑 → ¬ (𝜒𝜓))

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpr 109 . 2 ((𝜒𝜓) → 𝜓)
31, 2nsyl 618 1 (𝜑 → ¬ (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-in1 604  ax-in2 605
This theorem is referenced by:  dcan  923  poxp  6196  cauappcvgprlemladdrl  7594  caucvgprlemladdrl  7615  xrrebnd  9751  fzpreddisj  10002  fzp1nel  10035  fprodntrivap  11521  gcdsupex  11886  gcdsupcl  11887  gcdnncl  11896  gcd2n0cl  11898  qredeu  12025  cncongr2  12032  divnumden  12124  divdenle  12125  phisum  12168  pythagtriplem4  12196  pythagtriplem8  12200  pythagtriplem9  12201  ivthinclemdisj  13218  lgsneg  13525
  Copyright terms: Public domain W3C validator