![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnand | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
This theorem is referenced by: dcand 934 poxp 6272 cauappcvgprlemladdrl 7703 caucvgprlemladdrl 7724 xrrebnd 9871 fzpreddisj 10123 fzp1nel 10156 fprodntrivap 11701 gcdsupex 12068 gcdsupcl 12069 gcdnncl 12078 gcd2n0cl 12080 qredeu 12209 cncongr2 12216 divnumden 12308 divdenle 12309 phisum 12352 pythagtriplem4 12380 pythagtriplem8 12384 pythagtriplem9 12385 isnsgrp 12963 ivthinclemdisj 14751 lgsneg 15068 |
Copyright terms: Public domain | W3C validator |