Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intnand | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpr 109 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | nsyl 618 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-in1 604 ax-in2 605 |
This theorem is referenced by: dcan 923 poxp 6196 cauappcvgprlemladdrl 7594 caucvgprlemladdrl 7615 xrrebnd 9751 fzpreddisj 10002 fzp1nel 10035 fprodntrivap 11521 gcdsupex 11886 gcdsupcl 11887 gcdnncl 11896 gcd2n0cl 11898 qredeu 12025 cncongr2 12032 divnumden 12124 divdenle 12125 phisum 12168 pythagtriplem4 12196 pythagtriplem8 12200 pythagtriplem9 12201 ivthinclemdisj 13218 lgsneg 13525 |
Copyright terms: Public domain | W3C validator |