ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnand GIF version

Theorem intnand 932
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnand (𝜑 → ¬ (𝜒𝜓))

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpr 110 . 2 ((𝜒𝜓) → 𝜓)
31, 2nsyl 629 1 (𝜑 → ¬ (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  934  poxp  6299  cauappcvgprlemladdrl  7743  caucvgprlemladdrl  7764  xrrebnd  9913  fzpreddisj  10165  fzp1nel  10198  fprodntrivap  11768  bitsfzo  12139  bitsmod  12140  gcdsupex  12151  gcdsupcl  12152  gcdnncl  12161  gcd2n0cl  12163  qredeu  12292  cncongr2  12299  divnumden  12391  divdenle  12392  phisum  12436  pythagtriplem4  12464  pythagtriplem8  12468  pythagtriplem9  12469  isnsgrp  13110  ivthinclemdisj  14962  lgsneg  15351
  Copyright terms: Public domain W3C validator