ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnand GIF version

Theorem intnand 926
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intnand (𝜑 → ¬ (𝜒𝜓))

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2 (𝜑 → ¬ 𝜓)
2 simpr 109 . 2 ((𝜒𝜓) → 𝜓)
31, 2nsyl 623 1 (𝜑 → ¬ (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-in1 609  ax-in2 610
This theorem is referenced by:  dcan  928  poxp  6211  cauappcvgprlemladdrl  7619  caucvgprlemladdrl  7640  xrrebnd  9776  fzpreddisj  10027  fzp1nel  10060  fprodntrivap  11547  gcdsupex  11912  gcdsupcl  11913  gcdnncl  11922  gcd2n0cl  11924  qredeu  12051  cncongr2  12058  divnumden  12150  divdenle  12151  phisum  12194  pythagtriplem4  12222  pythagtriplem8  12226  pythagtriplem9  12227  isnsgrp  12647  ivthinclemdisj  13412  lgsneg  13719
  Copyright terms: Public domain W3C validator