![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnand | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
This theorem is referenced by: dcand 934 poxp 6252 cauappcvgprlemladdrl 7676 caucvgprlemladdrl 7697 xrrebnd 9839 fzpreddisj 10091 fzp1nel 10124 fprodntrivap 11612 gcdsupex 11978 gcdsupcl 11979 gcdnncl 11988 gcd2n0cl 11990 qredeu 12117 cncongr2 12124 divnumden 12216 divdenle 12217 phisum 12260 pythagtriplem4 12288 pythagtriplem8 12292 pythagtriplem9 12293 isnsgrp 12842 ivthinclemdisj 14522 lgsneg 14829 |
Copyright terms: Public domain | W3C validator |