| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnand | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | nsyl 629 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 935 poxp 6318 cauappcvgprlemladdrl 7770 caucvgprlemladdrl 7791 xrrebnd 9941 fzpreddisj 10193 fzp1nel 10226 fprodntrivap 11895 bitsfzo 12266 bitsmod 12267 gcdsupex 12278 gcdsupcl 12279 gcdnncl 12288 gcd2n0cl 12290 qredeu 12419 cncongr2 12426 divnumden 12518 divdenle 12519 phisum 12563 pythagtriplem4 12591 pythagtriplem8 12595 pythagtriplem9 12596 isnsgrp 13238 ivthinclemdisj 15112 lgsneg 15501 |
| Copyright terms: Public domain | W3C validator |