| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnand | GIF version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| intnand | ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | nsyl 631 | 1 ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: dcand 938 poxp 6376 cauappcvgprlemladdrl 7840 caucvgprlemladdrl 7861 xrrebnd 10011 fzpreddisj 10263 fzp1nel 10296 fprodntrivap 12090 bitsfzo 12461 bitsmod 12462 gcdsupex 12473 gcdsupcl 12474 gcdnncl 12483 gcd2n0cl 12485 qredeu 12614 cncongr2 12621 divnumden 12713 divdenle 12714 phisum 12758 pythagtriplem4 12786 pythagtriplem8 12790 pythagtriplem9 12791 isnsgrp 13434 ivthinclemdisj 15308 lgsneg 15697 umgredgnlp 15944 umgr2edg1 16001 umgr2edgneu 16004 |
| Copyright terms: Public domain | W3C validator |