ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fun GIF version

Definition df-fun 5200
Description: Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun I is true (funi 5230). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 4050 with the maps-to notation (see df-mpt 4052). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 5201), a function with a given domain and codomain (df-f 5202), a one-to-one function (df-f1 5203), an onto function (df-fo 5204), or a one-to-one onto function (df-f1o 5205). For alternate definitions, see dffun2 5208, dffun4 5209, dffun6 5212, dffun7 5225, dffun8 5226, and dffun9 5227. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fun (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))

Detailed syntax breakdown of Definition df-fun
StepHypRef Expression
1 cA . . 3 class 𝐴
21wfun 5192 . 2 wff Fun 𝐴
31wrel 4616 . . 3 wff Rel 𝐴
41ccnv 4610 . . . . 5 class 𝐴
51, 4ccom 4615 . . . 4 class (𝐴𝐴)
6 cid 4273 . . . 4 class I
75, 6wss 3121 . . 3 wff (𝐴𝐴) ⊆ I
83, 7wa 103 . 2 wff (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )
92, 8wb 104 1 wff (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
Colors of variables: wff set class
This definition is referenced by:  dffun2  5208  funrel  5215  funss  5217  nffun  5221  funi  5230  funcocnv2  5467
  Copyright terms: Public domain W3C validator