ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fun GIF version

Definition df-fun 5270
Description: Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun I is true (funi 5300). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 4104 with the maps-to notation (see df-mpt 4106). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 5271), a function with a given domain and codomain (df-f 5272), a one-to-one function (df-f1 5273), an onto function (df-fo 5274), or a one-to-one onto function (df-f1o 5275). For alternate definitions, see dffun2 5278, dffun4 5279, dffun6 5282, dffun7 5295, dffun8 5296, and dffun9 5297. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fun (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))

Detailed syntax breakdown of Definition df-fun
StepHypRef Expression
1 cA . . 3 class 𝐴
21wfun 5262 . 2 wff Fun 𝐴
31wrel 4678 . . 3 wff Rel 𝐴
41ccnv 4672 . . . . 5 class 𝐴
51, 4ccom 4677 . . . 4 class (𝐴𝐴)
6 cid 4333 . . . 4 class I
75, 6wss 3165 . . 3 wff (𝐴𝐴) ⊆ I
83, 7wa 104 . 2 wff (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )
92, 8wb 105 1 wff (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
Colors of variables: wff set class
This definition is referenced by:  dffun2  5278  funrel  5285  funss  5287  nffun  5291  funi  5300  funcocnv2  5541
  Copyright terms: Public domain W3C validator