ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fun GIF version

Definition df-fun 5287
Description: Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun I is true (funi 5317). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 4116 with the maps-to notation (see df-mpt 4118). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 5288), a function with a given domain and codomain (df-f 5289), a one-to-one function (df-f1 5290), an onto function (df-fo 5291), or a one-to-one onto function (df-f1o 5292). For alternate definitions, see dffun2 5295, dffun4 5296, dffun6 5299, dffun7 5312, dffun8 5313, and dffun9 5314. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fun (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))

Detailed syntax breakdown of Definition df-fun
StepHypRef Expression
1 cA . . 3 class 𝐴
21wfun 5279 . 2 wff Fun 𝐴
31wrel 4693 . . 3 wff Rel 𝐴
41ccnv 4687 . . . . 5 class 𝐴
51, 4ccom 4692 . . . 4 class (𝐴𝐴)
6 cid 4348 . . . 4 class I
75, 6wss 3170 . . 3 wff (𝐴𝐴) ⊆ I
83, 7wa 104 . 2 wff (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )
92, 8wb 105 1 wff (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
Colors of variables: wff set class
This definition is referenced by:  dffun2  5295  funrel  5302  funss  5304  nffun  5308  funi  5317  funcocnv2  5564
  Copyright terms: Public domain W3C validator