ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funss GIF version

Theorem funss 5295
Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Assertion
Ref Expression
funss (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))

Proof of Theorem funss
StepHypRef Expression
1 relss 4766 . . 3 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
2 coss1 4837 . . . . 5 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐴))
3 cnvss 4855 . . . . . 6 (𝐴𝐵𝐴𝐵)
4 coss2 4838 . . . . . 6 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
53, 4syl 14 . . . . 5 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
62, 5sstrd 3204 . . . 4 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐵))
7 sstr2 3201 . . . 4 ((𝐴𝐴) ⊆ (𝐵𝐵) → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
86, 7syl 14 . . 3 (𝐴𝐵 → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
91, 8anim12d 335 . 2 (𝐴𝐵 → ((Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ) → (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )))
10 df-fun 5278 . 2 (Fun 𝐵 ↔ (Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ))
11 df-fun 5278 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
129, 10, 113imtr4g 205 1 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wss 3167   I cid 4339  ccnv 4678  ccom 4683  Rel wrel 4684  Fun wfun 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-in 3173  df-ss 3180  df-br 4048  df-opab 4110  df-rel 4686  df-cnv 4687  df-co 4688  df-fun 5278
This theorem is referenced by:  funeq  5296  funopab4  5313  funres  5317  fun0  5337  funcnvcnv  5338  funin  5350  funres11  5351  foimacnv  5547  tfrlemibfn  6421  tfr1onlembfn  6437  tfrcllembfn  6450  strslssd  12923  strle1g  12982
  Copyright terms: Public domain W3C validator