Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  funss GIF version

Theorem funss 5137
 Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Assertion
Ref Expression
funss (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))

Proof of Theorem funss
StepHypRef Expression
1 relss 4621 . . 3 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
2 coss1 4689 . . . . 5 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐴))
3 cnvss 4707 . . . . . 6 (𝐴𝐵𝐴𝐵)
4 coss2 4690 . . . . . 6 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
53, 4syl 14 . . . . 5 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
62, 5sstrd 3102 . . . 4 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐵))
7 sstr2 3099 . . . 4 ((𝐴𝐴) ⊆ (𝐵𝐵) → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
86, 7syl 14 . . 3 (𝐴𝐵 → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
91, 8anim12d 333 . 2 (𝐴𝐵 → ((Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ) → (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )))
10 df-fun 5120 . 2 (Fun 𝐵 ↔ (Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ))
11 df-fun 5120 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
129, 10, 113imtr4g 204 1 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ⊆ wss 3066   I cid 4205  ◡ccnv 4533   ∘ ccom 4538  Rel wrel 4539  Fun wfun 5112 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-in 3072  df-ss 3079  df-br 3925  df-opab 3985  df-rel 4541  df-cnv 4542  df-co 4543  df-fun 5120 This theorem is referenced by:  funeq  5138  funopab4  5155  funres  5159  fun0  5176  funcnvcnv  5177  funin  5189  funres11  5190  foimacnv  5378  tfrlemibfn  6218  tfr1onlembfn  6234  tfrcllembfn  6247  strslssd  11994  strle1g  12038
 Copyright terms: Public domain W3C validator