![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funrel | GIF version |
Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5220 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
2 | 1 | simplbi 274 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3131 I cid 4290 ◡ccnv 4627 ∘ ccom 4632 Rel wrel 4633 Fun wfun 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fun 5220 |
This theorem is referenced by: 0nelfun 5236 funeu 5243 nfunv 5251 funopg 5252 funssres 5260 funun 5262 fununi 5286 funcnvres2 5293 funimaexg 5302 fnrel 5316 fcoi1 5398 f1orel 5466 funbrfv 5556 funbrfv2b 5562 fvmptss2 5593 mptrcl 5600 elfvmptrab1 5612 funfvbrb 5631 fmptco 5684 funresdfunsnss 5721 elmpocl 6071 funexw 6115 mpoxopn0yelv 6242 tfrlem6 6319 funresdfunsndc 6509 pmresg 6678 fundmen 6808 caseinl 7092 caseinr 7093 axaddf 7869 axmulf 7870 hashinfom 10760 structcnvcnv 12480 istopon 13598 eltg4i 13640 eltg3 13642 tg1 13644 tg2 13645 tgclb 13650 lmrcl 13776 |
Copyright terms: Public domain | W3C validator |