![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funrel | GIF version |
Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5017 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
2 | 1 | simplbi 268 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 2999 I cid 4115 ◡ccnv 4437 ∘ ccom 4442 Rel wrel 4443 Fun wfun 5009 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-fun 5017 |
This theorem is referenced by: 0nelfun 5033 funeu 5040 nfunv 5047 funopg 5048 funssres 5056 funun 5058 fununi 5082 funcnvres2 5089 funimaexg 5098 fnrel 5112 fcoi1 5191 f1orel 5256 funbrfv 5343 funbrfv2b 5349 fvmptss2 5379 funfvbrb 5412 fmptco 5464 funresdfunsnss 5500 elmpt2cl 5842 mpt2xopn0yelv 6004 tfrlem6 6081 funresdfunsndc 6265 pmresg 6433 fundmen 6523 hashinfom 10186 structcnvcnv 11510 istopon 11610 |
Copyright terms: Public domain | W3C validator |