| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funrel | GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 5261 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 I cid 4324 ◡ccnv 4663 ∘ ccom 4668 Rel wrel 4669 Fun wfun 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5261 |
| This theorem is referenced by: 0nelfun 5277 funeu 5284 nfunv 5292 funopg 5293 funssres 5301 funun 5303 fununi 5327 funcnvres2 5334 funimaexg 5343 fnrel 5357 fcoi1 5441 f1orel 5510 funbrfv 5602 funbrfv2b 5608 fvmptss2 5639 mptrcl 5647 elfvmptrab1 5659 funfvbrb 5678 fmptco 5731 funresdfunsnss 5768 elmpocl 6122 funexw 6178 mpoxopn0yelv 6306 tfrlem6 6383 funresdfunsndc 6573 pmresg 6744 fundmen 6874 caseinl 7166 caseinr 7167 axaddf 7952 axmulf 7953 hashinfom 10887 4sqlemffi 12590 structcnvcnv 12719 lidlmex 14107 istopon 14333 eltg4i 14375 eltg3 14377 tg1 14379 tg2 14380 tgclb 14385 lmrcl 14511 |
| Copyright terms: Public domain | W3C validator |