| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funrel | GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 5261 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 I cid 4324 ◡ccnv 4663 ∘ ccom 4668 Rel wrel 4669 Fun wfun 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5261 |
| This theorem is referenced by: 0nelfun 5277 funeu 5284 nfunv 5292 funopg 5293 funssres 5301 funun 5303 fununi 5327 funcnvres2 5334 funimaexg 5343 fnrel 5357 fcoi1 5439 f1orel 5508 funbrfv 5600 funbrfv2b 5606 fvmptss2 5637 mptrcl 5645 elfvmptrab1 5657 funfvbrb 5676 fmptco 5729 funresdfunsnss 5766 elmpocl 6119 funexw 6170 mpoxopn0yelv 6298 tfrlem6 6375 funresdfunsndc 6565 pmresg 6736 fundmen 6866 caseinl 7158 caseinr 7159 axaddf 7937 axmulf 7938 hashinfom 10872 4sqlemffi 12575 structcnvcnv 12704 lidlmex 14041 istopon 14259 eltg4i 14301 eltg3 14303 tg1 14305 tg2 14306 tgclb 14311 lmrcl 14437 |
| Copyright terms: Public domain | W3C validator |