| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funrel | GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 5296 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3177 I cid 4356 ◡ccnv 4695 ∘ ccom 4700 Rel wrel 4701 Fun wfun 5288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5296 |
| This theorem is referenced by: 0nelfun 5312 funeu 5319 nfunv 5327 funopg 5328 funssres 5336 funun 5338 fununfun 5340 fununi 5365 funcnvres2 5372 funimaexg 5381 fnrel 5395 fcoi1 5482 f1orel 5551 funbrfv 5644 funbrfv2b 5651 fvmptss2 5682 mptrcl 5690 elfvmptrab1 5702 funfvbrb 5721 fmptco 5774 funopsn 5790 funresdfunsnss 5815 elmpocl 6171 funexw 6227 mpoxopn0yelv 6355 tfrlem6 6432 funresdfunsndc 6622 pmresg 6793 fundmen 6929 caseinl 7226 caseinr 7227 axaddf 8023 axmulf 8024 hashinfom 10967 4sqlemffi 12885 structcnvcnv 13014 lidlmex 14404 istopon 14652 eltg4i 14694 eltg3 14696 tg1 14698 tg2 14699 tgclb 14704 lmrcl 14830 1vgrex 15786 edg0iedg0g 15831 umgrnloopv 15879 |
| Copyright terms: Public domain | W3C validator |