Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funrel | GIF version |
Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5200 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
2 | 1 | simplbi 272 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3121 I cid 4273 ◡ccnv 4610 ∘ ccom 4615 Rel wrel 4616 Fun wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fun 5200 |
This theorem is referenced by: 0nelfun 5216 funeu 5223 nfunv 5231 funopg 5232 funssres 5240 funun 5242 fununi 5266 funcnvres2 5273 funimaexg 5282 fnrel 5296 fcoi1 5378 f1orel 5445 funbrfv 5535 funbrfv2b 5541 fvmptss2 5571 mptrcl 5578 elfvmptrab1 5590 funfvbrb 5609 fmptco 5662 funresdfunsnss 5699 elmpocl 6047 funexw 6091 mpoxopn0yelv 6218 tfrlem6 6295 funresdfunsndc 6485 pmresg 6654 fundmen 6784 caseinl 7068 caseinr 7069 axaddf 7830 axmulf 7831 hashinfom 10712 structcnvcnv 12432 istopon 12805 eltg4i 12849 eltg3 12851 tg1 12853 tg2 12854 tgclb 12859 lmrcl 12985 |
Copyright terms: Public domain | W3C validator |