| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funrel | GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 5320 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3197 I cid 4379 ◡ccnv 4718 ∘ ccom 4723 Rel wrel 4724 Fun wfun 5312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5320 |
| This theorem is referenced by: 0nelfun 5336 funeu 5343 nfunv 5351 funopg 5352 funssres 5360 funun 5362 fununfun 5364 fununi 5389 funcnvres2 5396 funimaexg 5405 fnrel 5419 fcoi1 5508 f1orel 5577 funbrfv 5672 funbrfv2b 5680 fvmptss2 5711 mptrcl 5719 elfvmptrab1 5731 funfvbrb 5750 fmptco 5803 funopsn 5819 funresdfunsnss 5846 elmpocl 6206 relmptopab 6213 funexw 6263 mpoxopn0yelv 6391 tfrlem6 6468 funresdfunsndc 6660 pmresg 6831 fundmen 6967 caseinl 7266 caseinr 7267 axaddf 8063 axmulf 8064 hashinfom 11008 4sqlemffi 12927 structcnvcnv 13056 lidlmex 14447 istopon 14695 eltg4i 14737 eltg3 14739 tg1 14741 tg2 14742 tgclb 14747 lmrcl 14874 1vgrex 15829 edg0iedg0g 15874 umgrnloopv 15922 |
| Copyright terms: Public domain | W3C validator |