Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funrel | GIF version |
Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5190 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
2 | 1 | simplbi 272 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3116 I cid 4266 ◡ccnv 4603 ∘ ccom 4608 Rel wrel 4609 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fun 5190 |
This theorem is referenced by: 0nelfun 5206 funeu 5213 nfunv 5221 funopg 5222 funssres 5230 funun 5232 fununi 5256 funcnvres2 5263 funimaexg 5272 fnrel 5286 fcoi1 5368 f1orel 5435 funbrfv 5525 funbrfv2b 5531 fvmptss2 5561 mptrcl 5568 elfvmptrab1 5580 funfvbrb 5598 fmptco 5651 funresdfunsnss 5688 elmpocl 6036 funexw 6080 mpoxopn0yelv 6207 tfrlem6 6284 funresdfunsndc 6474 pmresg 6642 fundmen 6772 caseinl 7056 caseinr 7057 axaddf 7809 axmulf 7810 hashinfom 10691 structcnvcnv 12410 istopon 12651 eltg4i 12695 eltg3 12697 tg1 12699 tg2 12700 tgclb 12705 lmrcl 12831 |
Copyright terms: Public domain | W3C validator |