![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funrel | GIF version |
Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5256 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
2 | 1 | simplbi 274 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3153 I cid 4319 ◡ccnv 4658 ∘ ccom 4663 Rel wrel 4664 Fun wfun 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fun 5256 |
This theorem is referenced by: 0nelfun 5272 funeu 5279 nfunv 5287 funopg 5288 funssres 5296 funun 5298 fununi 5322 funcnvres2 5329 funimaexg 5338 fnrel 5352 fcoi1 5434 f1orel 5503 funbrfv 5595 funbrfv2b 5601 fvmptss2 5632 mptrcl 5640 elfvmptrab1 5652 funfvbrb 5671 fmptco 5724 funresdfunsnss 5761 elmpocl 6113 funexw 6164 mpoxopn0yelv 6292 tfrlem6 6369 funresdfunsndc 6559 pmresg 6730 fundmen 6860 caseinl 7150 caseinr 7151 axaddf 7928 axmulf 7929 hashinfom 10849 4sqlemffi 12534 structcnvcnv 12634 lidlmex 13971 istopon 14181 eltg4i 14223 eltg3 14225 tg1 14227 tg2 14228 tgclb 14233 lmrcl 14359 |
Copyright terms: Public domain | W3C validator |