| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funrel | GIF version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel | ⊢ (Fun 𝐴 → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 5278 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (Fun 𝐴 → Rel 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3167 I cid 4339 ◡ccnv 4678 ∘ ccom 4683 Rel wrel 4684 Fun wfun 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5278 |
| This theorem is referenced by: 0nelfun 5294 funeu 5301 nfunv 5309 funopg 5310 funssres 5318 funun 5320 fununfun 5322 fununi 5347 funcnvres2 5354 funimaexg 5363 fnrel 5377 fcoi1 5463 f1orel 5532 funbrfv 5624 funbrfv2b 5630 fvmptss2 5661 mptrcl 5669 elfvmptrab1 5681 funfvbrb 5700 fmptco 5753 funopsn 5769 funresdfunsnss 5794 elmpocl 6148 funexw 6204 mpoxopn0yelv 6332 tfrlem6 6409 funresdfunsndc 6599 pmresg 6770 fundmen 6905 caseinl 7200 caseinr 7201 axaddf 7988 axmulf 7989 hashinfom 10930 4sqlemffi 12763 structcnvcnv 12892 lidlmex 14281 istopon 14529 eltg4i 14571 eltg3 14573 tg1 14575 tg2 14576 tgclb 14581 lmrcl 14707 1vgrex 15663 edg0iedg0g 15706 |
| Copyright terms: Public domain | W3C validator |