ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun2 GIF version

Theorem dffun2 5222
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem dffun2
StepHypRef Expression
1 df-fun 5214 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
2 df-id 4290 . . . . . 6 I = {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧}
32sseq2i 3182 . . . . 5 ((𝐴𝐴) ⊆ I ↔ (𝐴𝐴) ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧})
4 df-co 4632 . . . . . 6 (𝐴𝐴) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)}
54sseq1i 3181 . . . . 5 ((𝐴𝐴) ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} ↔ {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)} ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧})
6 ssopab2b 4273 . . . . 5 ({⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧)} ⊆ {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} ↔ ∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧))
73, 5, 63bitri 206 . . . 4 ((𝐴𝐴) ⊆ I ↔ ∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧))
8 vex 2740 . . . . . . . . . . . 12 𝑦 ∈ V
9 vex 2740 . . . . . . . . . . . 12 𝑥 ∈ V
108, 9brcnv 4806 . . . . . . . . . . 11 (𝑦𝐴𝑥𝑥𝐴𝑦)
1110anbi1i 458 . . . . . . . . . 10 ((𝑦𝐴𝑥𝑥𝐴𝑧) ↔ (𝑥𝐴𝑦𝑥𝐴𝑧))
1211exbii 1605 . . . . . . . . 9 (∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) ↔ ∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧))
1312imbi1i 238 . . . . . . . 8 ((∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
14 19.23v 1883 . . . . . . . 8 (∀𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ (∃𝑥(𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1513, 14bitr4i 187 . . . . . . 7 ((∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1615albii 1470 . . . . . 6 (∀𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
17 alcom 1478 . . . . . 6 (∀𝑧𝑥((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1816, 17bitri 184 . . . . 5 (∀𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
1918albii 1470 . . . 4 (∀𝑦𝑧(∃𝑥(𝑦𝐴𝑥𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
20 alcom 1478 . . . 4 (∀𝑦𝑥𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
217, 19, 203bitri 206 . . 3 ((𝐴𝐴) ⊆ I ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧))
2221anbi2i 457 . 2 ((Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ) ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
231, 22bitri 184 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351  wex 1492  wss 3129   class class class wbr 4000  {copab 4060   I cid 4285  ccnv 4622  ccom 4627  Rel wrel 4628  Fun wfun 5206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-id 4290  df-cnv 4631  df-co 4632  df-fun 5214
This theorem is referenced by:  dffun4  5223  dffun6f  5225  sbcfung  5236  funcnveq  5275  fliftfun  5791  fclim  11286
  Copyright terms: Public domain W3C validator