Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun9 GIF version

Theorem dffun9 5152
 Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
dffun9 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dffun9
StepHypRef Expression
1 dffun7 5150 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
2 vex 2689 . . . . . . . 8 𝑥 ∈ V
3 vex 2689 . . . . . . . 8 𝑦 ∈ V
42, 3brelrn 4772 . . . . . . 7 (𝑥𝐴𝑦𝑦 ∈ ran 𝐴)
54pm4.71ri 389 . . . . . 6 (𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
65mobii 2036 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
7 df-rmo 2424 . . . . 5 (∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
86, 7bitr4i 186 . . . 4 (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)
98ralbii 2441 . . 3 (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)
109anbi2i 452 . 2 ((Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦))
111, 10bitri 183 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦))
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   ↔ wb 104   ∈ wcel 1480  ∃*wmo 2000  ∀wral 2416  ∃*wrmo 2419   class class class wbr 3929  dom cdm 4539  ran crn 4540  Rel wrel 4544  Fun wfun 5117 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rmo 2424  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-id 4215  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator