| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffun9 | GIF version | ||
| Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| dffun9 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun7 5307 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | |
| 2 | vex 2776 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 3 | vex 2776 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | brelrn 4920 | . . . . . . 7 ⊢ (𝑥𝐴𝑦 → 𝑦 ∈ ran 𝐴) |
| 5 | 4 | pm4.71ri 392 | . . . . . 6 ⊢ (𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
| 6 | 5 | mobii 2092 | . . . . 5 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
| 7 | df-rmo 2493 | . . . . 5 ⊢ (∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) | |
| 8 | 6, 7 | bitr4i 187 | . . . 4 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦) |
| 9 | 8 | ralbii 2513 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦) |
| 10 | 9 | anbi2i 457 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
| 11 | 1, 10 | bitri 184 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃*wmo 2056 ∈ wcel 2177 ∀wral 2485 ∃*wrmo 2488 class class class wbr 4051 dom cdm 4683 ran crn 4684 Rel wrel 4688 Fun wfun 5274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rmo 2493 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |