ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun9 GIF version

Theorem dffun9 5309
Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
dffun9 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dffun9
StepHypRef Expression
1 dffun7 5307 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
2 vex 2776 . . . . . . . 8 𝑥 ∈ V
3 vex 2776 . . . . . . . 8 𝑦 ∈ V
42, 3brelrn 4920 . . . . . . 7 (𝑥𝐴𝑦𝑦 ∈ ran 𝐴)
54pm4.71ri 392 . . . . . 6 (𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
65mobii 2092 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
7 df-rmo 2493 . . . . 5 (∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
86, 7bitr4i 187 . . . 4 (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)
98ralbii 2513 . . 3 (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)
109anbi2i 457 . 2 ((Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦))
111, 10bitri 184 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  ∃*wmo 2056  wcel 2177  wral 2485  ∃*wrmo 2488   class class class wbr 4051  dom cdm 4683  ran crn 4684  Rel wrel 4688  Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rmo 2493  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-fun 5282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator