ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun6 GIF version

Theorem dffun6 5284
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffun6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem dffun6
StepHypRef Expression
1 nfcv 2347 . 2 𝑥𝐹
2 nfcv 2347 . 2 𝑦𝐹
31, 2dffun6f 5283 1 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1370  ∃*wmo 2054   class class class wbr 4043  Rel wrel 4679  Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-cnv 4682  df-co 4683  df-fun 5272
This theorem is referenced by:  funmo  5285  dffun7  5297  fununfun  5316  funcnvsn  5318  funcnv2  5333  svrelfun  5338  fnres  5391  nfunsn  5610  shftfn  11077  dvfgg  15102
  Copyright terms: Public domain W3C validator