ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun6 GIF version

Theorem dffun6 5331
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffun6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem dffun6
StepHypRef Expression
1 nfcv 2372 . 2 𝑥𝐹
2 nfcv 2372 . 2 𝑦𝐹
31, 2dffun6f 5330 1 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1393  ∃*wmo 2078   class class class wbr 4082  Rel wrel 4723  Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-cnv 4726  df-co 4727  df-fun 5319
This theorem is referenced by:  funmo  5332  dffun7  5344  fununfun  5363  funcnvsn  5365  funcnv2  5380  svrelfun  5385  fnres  5439  nfunsn  5663  shftfn  11330  dvfgg  15356
  Copyright terms: Public domain W3C validator