ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun6 GIF version

Theorem dffun6 5273
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffun6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem dffun6
StepHypRef Expression
1 nfcv 2339 . 2 𝑥𝐹
2 nfcv 2339 . 2 𝑦𝐹
31, 2dffun6f 5272 1 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1362  ∃*wmo 2046   class class class wbr 4034  Rel wrel 4669  Fun wfun 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-cnv 4672  df-co 4673  df-fun 5261
This theorem is referenced by:  funmo  5274  dffun7  5286  funcnvsn  5304  funcnv2  5319  svrelfun  5324  fnres  5377  nfunsn  5596  shftfn  11006  dvfgg  15008
  Copyright terms: Public domain W3C validator