ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun6 GIF version

Theorem dffun6 5212
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffun6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem dffun6
StepHypRef Expression
1 nfcv 2312 . 2 𝑥𝐹
2 nfcv 2312 . 2 𝑦𝐹
31, 2dffun6f 5211 1 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1346  ∃*wmo 2020   class class class wbr 3989  Rel wrel 4616  Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-cnv 4619  df-co 4620  df-fun 5200
This theorem is referenced by:  funmo  5213  dffun7  5225  funcnvsn  5243  funcnv2  5258  svrelfun  5263  fnres  5314  nfunsn  5530  shftfn  10788  dvfgg  13451
  Copyright terms: Public domain W3C validator