| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffun6 | GIF version | ||
| Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.) |
| Ref | Expression |
|---|---|
| dffun6 | ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐹 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑦𝐹 | |
| 3 | 1, 2 | dffun6f 5330 | 1 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1393 ∃*wmo 2078 class class class wbr 4082 Rel wrel 4723 Fun wfun 5311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-cnv 4726 df-co 4727 df-fun 5319 |
| This theorem is referenced by: funmo 5332 dffun7 5344 fununfun 5363 funcnvsn 5365 funcnv2 5380 svrelfun 5385 fnres 5439 nfunsn 5663 shftfn 11330 dvfgg 15356 |
| Copyright terms: Public domain | W3C validator |