ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcocnv2 GIF version

Theorem funcocnv2 5599
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
funcocnv2 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))

Proof of Theorem funcocnv2
StepHypRef Expression
1 df-fun 5320 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
21simprbi 275 . 2 (Fun 𝐹 → (𝐹𝐹) ⊆ I )
3 iss 5051 . . 3 ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ dom (𝐹𝐹)))
4 dfdm4 4915 . . . . . . . 8 dom 𝐹 = ran 𝐹
5 dmcoeq 4997 . . . . . . . 8 (dom 𝐹 = ran 𝐹 → dom (𝐹𝐹) = dom 𝐹)
64, 5ax-mp 5 . . . . . . 7 dom (𝐹𝐹) = dom 𝐹
7 df-rn 4730 . . . . . . 7 ran 𝐹 = dom 𝐹
86, 7eqtr4i 2253 . . . . . 6 dom (𝐹𝐹) = ran 𝐹
98a1i 9 . . . . 5 (Fun 𝐹 → dom (𝐹𝐹) = ran 𝐹)
109reseq2d 5005 . . . 4 (Fun 𝐹 → ( I ↾ dom (𝐹𝐹)) = ( I ↾ ran 𝐹))
1110eqeq2d 2241 . . 3 (Fun 𝐹 → ((𝐹𝐹) = ( I ↾ dom (𝐹𝐹)) ↔ (𝐹𝐹) = ( I ↾ ran 𝐹)))
123, 11bitrid 192 . 2 (Fun 𝐹 → ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ ran 𝐹)))
132, 12mpbid 147 1 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197   I cid 4379  ccnv 4718  dom cdm 4719  ran crn 4720  cres 4721  ccom 4723  Rel wrel 4724  Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-fun 5320
This theorem is referenced by:  fococnv2  5600  f1cocnv2  5602  funcoeqres  5605
  Copyright terms: Public domain W3C validator