| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funcocnv2 | GIF version | ||
| Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| funcocnv2 | ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 5296 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
| 2 | 1 | simprbi 275 | . 2 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) ⊆ I ) |
| 3 | iss 5027 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹))) | |
| 4 | dfdm4 4892 | . . . . . . . 8 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 5 | dmcoeq 4973 | . . . . . . . 8 ⊢ (dom 𝐹 = ran ◡𝐹 → dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹 |
| 7 | df-rn 4707 | . . . . . . 7 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 8 | 6, 7 | eqtr4i 2233 | . . . . . 6 ⊢ dom (𝐹 ∘ ◡𝐹) = ran 𝐹 |
| 9 | 8 | a1i 9 | . . . . 5 ⊢ (Fun 𝐹 → dom (𝐹 ∘ ◡𝐹) = ran 𝐹) |
| 10 | 9 | reseq2d 4981 | . . . 4 ⊢ (Fun 𝐹 → ( I ↾ dom (𝐹 ∘ ◡𝐹)) = ( I ↾ ran 𝐹)) |
| 11 | 10 | eqeq2d 2221 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹)) ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹))) |
| 12 | 3, 11 | bitrid 192 | . 2 ⊢ (Fun 𝐹 → ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹))) |
| 13 | 2, 12 | mpbid 147 | 1 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ⊆ wss 3177 I cid 4356 ◡ccnv 4695 dom cdm 4696 ran crn 4697 ↾ cres 4698 ∘ ccom 4700 Rel wrel 4701 Fun wfun 5288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-fun 5296 |
| This theorem is referenced by: fococnv2 5574 f1cocnv2 5576 funcoeqres 5579 |
| Copyright terms: Public domain | W3C validator |