| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funcocnv2 | GIF version | ||
| Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| funcocnv2 | ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 5278 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
| 2 | 1 | simprbi 275 | . 2 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) ⊆ I ) |
| 3 | iss 5010 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹))) | |
| 4 | dfdm4 4875 | . . . . . . . 8 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 5 | dmcoeq 4956 | . . . . . . . 8 ⊢ (dom 𝐹 = ran ◡𝐹 → dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹 |
| 7 | df-rn 4690 | . . . . . . 7 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 8 | 6, 7 | eqtr4i 2230 | . . . . . 6 ⊢ dom (𝐹 ∘ ◡𝐹) = ran 𝐹 |
| 9 | 8 | a1i 9 | . . . . 5 ⊢ (Fun 𝐹 → dom (𝐹 ∘ ◡𝐹) = ran 𝐹) |
| 10 | 9 | reseq2d 4964 | . . . 4 ⊢ (Fun 𝐹 → ( I ↾ dom (𝐹 ∘ ◡𝐹)) = ( I ↾ ran 𝐹)) |
| 11 | 10 | eqeq2d 2218 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹)) ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹))) |
| 12 | 3, 11 | bitrid 192 | . 2 ⊢ (Fun 𝐹 → ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹))) |
| 13 | 2, 12 | mpbid 147 | 1 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3167 I cid 4339 ◡ccnv 4678 dom cdm 4679 ran crn 4680 ↾ cres 4681 ∘ ccom 4683 Rel wrel 4684 Fun wfun 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-fun 5278 |
| This theorem is referenced by: fococnv2 5555 f1cocnv2 5557 funcoeqres 5560 |
| Copyright terms: Public domain | W3C validator |