ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcocnv2 GIF version

Theorem funcocnv2 5554
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
funcocnv2 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))

Proof of Theorem funcocnv2
StepHypRef Expression
1 df-fun 5278 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
21simprbi 275 . 2 (Fun 𝐹 → (𝐹𝐹) ⊆ I )
3 iss 5010 . . 3 ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ dom (𝐹𝐹)))
4 dfdm4 4875 . . . . . . . 8 dom 𝐹 = ran 𝐹
5 dmcoeq 4956 . . . . . . . 8 (dom 𝐹 = ran 𝐹 → dom (𝐹𝐹) = dom 𝐹)
64, 5ax-mp 5 . . . . . . 7 dom (𝐹𝐹) = dom 𝐹
7 df-rn 4690 . . . . . . 7 ran 𝐹 = dom 𝐹
86, 7eqtr4i 2230 . . . . . 6 dom (𝐹𝐹) = ran 𝐹
98a1i 9 . . . . 5 (Fun 𝐹 → dom (𝐹𝐹) = ran 𝐹)
109reseq2d 4964 . . . 4 (Fun 𝐹 → ( I ↾ dom (𝐹𝐹)) = ( I ↾ ran 𝐹))
1110eqeq2d 2218 . . 3 (Fun 𝐹 → ((𝐹𝐹) = ( I ↾ dom (𝐹𝐹)) ↔ (𝐹𝐹) = ( I ↾ ran 𝐹)))
123, 11bitrid 192 . 2 (Fun 𝐹 → ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ ran 𝐹)))
132, 12mpbid 147 1 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wss 3167   I cid 4339  ccnv 4678  dom cdm 4679  ran crn 4680  cres 4681  ccom 4683  Rel wrel 4684  Fun wfun 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-fun 5278
This theorem is referenced by:  fococnv2  5555  f1cocnv2  5557  funcoeqres  5560
  Copyright terms: Public domain W3C validator