ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcocnv2 GIF version

Theorem funcocnv2 5488
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
funcocnv2 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))

Proof of Theorem funcocnv2
StepHypRef Expression
1 df-fun 5220 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
21simprbi 275 . 2 (Fun 𝐹 → (𝐹𝐹) ⊆ I )
3 iss 4955 . . 3 ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ dom (𝐹𝐹)))
4 dfdm4 4821 . . . . . . . 8 dom 𝐹 = ran 𝐹
5 dmcoeq 4901 . . . . . . . 8 (dom 𝐹 = ran 𝐹 → dom (𝐹𝐹) = dom 𝐹)
64, 5ax-mp 5 . . . . . . 7 dom (𝐹𝐹) = dom 𝐹
7 df-rn 4639 . . . . . . 7 ran 𝐹 = dom 𝐹
86, 7eqtr4i 2201 . . . . . 6 dom (𝐹𝐹) = ran 𝐹
98a1i 9 . . . . 5 (Fun 𝐹 → dom (𝐹𝐹) = ran 𝐹)
109reseq2d 4909 . . . 4 (Fun 𝐹 → ( I ↾ dom (𝐹𝐹)) = ( I ↾ ran 𝐹))
1110eqeq2d 2189 . . 3 (Fun 𝐹 → ((𝐹𝐹) = ( I ↾ dom (𝐹𝐹)) ↔ (𝐹𝐹) = ( I ↾ ran 𝐹)))
123, 11bitrid 192 . 2 (Fun 𝐹 → ((𝐹𝐹) ⊆ I ↔ (𝐹𝐹) = ( I ↾ ran 𝐹)))
132, 12mpbid 147 1 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wss 3131   I cid 4290  ccnv 4627  dom cdm 4628  ran crn 4629  cres 4630  ccom 4632  Rel wrel 4633  Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-fun 5220
This theorem is referenced by:  fococnv2  5489  f1cocnv2  5491  funcoeqres  5494
  Copyright terms: Public domain W3C validator