![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funcocnv2 | GIF version |
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
funcocnv2 | ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5256 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
2 | 1 | simprbi 275 | . 2 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) ⊆ I ) |
3 | iss 4988 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹))) | |
4 | dfdm4 4854 | . . . . . . . 8 ⊢ dom 𝐹 = ran ◡𝐹 | |
5 | dmcoeq 4934 | . . . . . . . 8 ⊢ (dom 𝐹 = ran ◡𝐹 → dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹 |
7 | df-rn 4670 | . . . . . . 7 ⊢ ran 𝐹 = dom ◡𝐹 | |
8 | 6, 7 | eqtr4i 2217 | . . . . . 6 ⊢ dom (𝐹 ∘ ◡𝐹) = ran 𝐹 |
9 | 8 | a1i 9 | . . . . 5 ⊢ (Fun 𝐹 → dom (𝐹 ∘ ◡𝐹) = ran 𝐹) |
10 | 9 | reseq2d 4942 | . . . 4 ⊢ (Fun 𝐹 → ( I ↾ dom (𝐹 ∘ ◡𝐹)) = ( I ↾ ran 𝐹)) |
11 | 10 | eqeq2d 2205 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹)) ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹))) |
12 | 3, 11 | bitrid 192 | . 2 ⊢ (Fun 𝐹 → ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹))) |
13 | 2, 12 | mpbid 147 | 1 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3153 I cid 4319 ◡ccnv 4658 dom cdm 4659 ran crn 4660 ↾ cres 4661 ∘ ccom 4663 Rel wrel 4664 Fun wfun 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-fun 5256 |
This theorem is referenced by: fococnv2 5526 f1cocnv2 5528 funcoeqres 5531 |
Copyright terms: Public domain | W3C validator |