Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-mpt | GIF version |
Description: Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | cmpt 4042 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | 1 | cv 1342 | . . . . 5 class 𝑥 |
6 | 5, 2 | wcel 2136 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1342 | . . . . 5 class 𝑦 |
9 | 8, 3 | wceq 1343 | . . . 4 wff 𝑦 = 𝐵 |
10 | 6, 9 | wa 103 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
11 | 10, 1, 7 | copab 4041 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
12 | 4, 11 | wceq 1343 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
Colors of variables: wff set class |
This definition is referenced by: mpteq12f 4061 nfmpt 4073 nfmpt1 4074 cbvmptf 4075 cbvmpt 4076 mptv 4078 fconstmpt 4650 mptrel 4731 rnmpt 4851 resmpt 4931 mptresid 4937 mptcnv 5005 mptpreima 5096 funmpt 5225 dfmpt3 5309 mptfng 5312 mptun 5318 dffn5im 5531 fvmptss2 5560 fvmptg 5561 fndmin 5591 f1ompt 5635 fmptco 5650 mpomptx 5929 f1ocnvd 6039 f1od2 6199 dftpos4 6227 mapsncnv 6657 |
Copyright terms: Public domain | W3C validator |