![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-mpt | GIF version |
Description: Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | cmpt 4064 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | 1 | cv 1352 | . . . . 5 class 𝑥 |
6 | 5, 2 | wcel 2148 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1352 | . . . . 5 class 𝑦 |
9 | 8, 3 | wceq 1353 | . . . 4 wff 𝑦 = 𝐵 |
10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
11 | 10, 1, 7 | copab 4063 | . 2 class {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
12 | 4, 11 | wceq 1353 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
Colors of variables: wff set class |
This definition is referenced by: mpteq12f 4083 nfmpt 4095 nfmpt1 4096 cbvmptf 4097 cbvmpt 4098 mptv 4100 fconstmpt 4673 mptrel 4755 rnmpt 4875 resmpt 4955 mptresid 4961 mptcnv 5031 mptpreima 5122 funmpt 5254 dfmpt3 5338 mptfng 5341 mptun 5347 dffn5im 5561 fvmptss2 5591 fvmptg 5592 fndmin 5623 f1ompt 5667 fmptco 5682 mpomptx 5965 f1ocnvd 6072 f1od2 6235 dftpos4 6263 mapsncnv 6694 |
Copyright terms: Public domain | W3C validator |