| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-mpt | GIF version | ||
| Description: Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cmpt 4145 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 5 | 1 | cv 1394 | . . . . 5 class 𝑥 |
| 6 | 5, 2 | wcel 2200 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1394 | . . . . 5 class 𝑦 |
| 9 | 8, 3 | wceq 1395 | . . . 4 wff 𝑦 = 𝐵 |
| 10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
| 11 | 10, 1, 7 | copab 4144 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 12 | 4, 11 | wceq 1395 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Colors of variables: wff set class |
| This definition is referenced by: mpteq12f 4164 nfmpt 4176 nfmpt1 4177 cbvmptf 4178 cbvmpt 4179 mptv 4181 fconstmpt 4766 mptrel 4850 rnmpt 4972 resmpt 5053 mptresid 5059 mptcnv 5131 mptpreima 5222 funmpt 5356 dfmpt3 5446 mptfng 5449 mptun 5455 dffn5im 5681 fvmptss2 5711 fvmptg 5712 fndmin 5744 f1ompt 5788 fmptco 5803 mpomptx 6101 f1ocnvd 6214 f1od2 6387 dftpos4 6415 mapsncnv 6850 |
| Copyright terms: Public domain | W3C validator |