| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-mpt | GIF version | ||
| Description: Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cmpt 4124 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 5 | 1 | cv 1374 | . . . . 5 class 𝑥 |
| 6 | 5, 2 | wcel 2180 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1374 | . . . . 5 class 𝑦 |
| 9 | 8, 3 | wceq 1375 | . . . 4 wff 𝑦 = 𝐵 |
| 10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
| 11 | 10, 1, 7 | copab 4123 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 12 | 4, 11 | wceq 1375 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Colors of variables: wff set class |
| This definition is referenced by: mpteq12f 4143 nfmpt 4155 nfmpt1 4156 cbvmptf 4157 cbvmpt 4158 mptv 4160 fconstmpt 4743 mptrel 4827 rnmpt 4948 resmpt 5029 mptresid 5035 mptcnv 5107 mptpreima 5198 funmpt 5332 dfmpt3 5422 mptfng 5425 mptun 5431 dffn5im 5652 fvmptss2 5682 fvmptg 5683 fndmin 5715 f1ompt 5759 fmptco 5774 mpomptx 6066 f1ocnvd 6178 f1od2 6351 dftpos4 6379 mapsncnv 6812 |
| Copyright terms: Public domain | W3C validator |