ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-mpt GIF version

Definition df-mpt 3923
Description: Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from 𝑥 (in 𝐴) to 𝐵(𝑥)." The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.)
Assertion
Ref Expression
df-mpt (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-mpt
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3cmpt 3921 . 2 class (𝑥𝐴𝐵)
51cv 1295 . . . . 5 class 𝑥
65, 2wcel 1445 . . . 4 wff 𝑥𝐴
7 vy . . . . . 6 setvar 𝑦
87cv 1295 . . . . 5 class 𝑦
98, 3wceq 1296 . . . 4 wff 𝑦 = 𝐵
106, 9wa 103 . . 3 wff (𝑥𝐴𝑦 = 𝐵)
1110, 1, 7copab 3920 . 2 class {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
124, 11wceq 1296 1 wff (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
Colors of variables: wff set class
This definition is referenced by:  mpteq12f  3940  nfmpt  3952  nfmpt1  3953  cbvmptf  3954  cbvmpt  3955  mptv  3957  fconstmpt  4514  mptrel  4595  rnmpt  4715  resmpt  4793  mptresid  4799  mptcnv  4867  mptpreima  4958  funmpt  5086  dfmpt3  5170  mptfng  5173  mptun  5178  dffn5im  5385  fvmptss2  5414  fvmptg  5415  fndmin  5445  f1ompt  5489  fmptco  5503  mpt2mptx  5777  f1ocnvd  5884  f1od2  6038  dftpos4  6066  mapsncnv  6492
  Copyright terms: Public domain W3C validator