| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-mpt | GIF version | ||
| Description: Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) | 
| Ref | Expression | 
|---|---|
| df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cmpt 4094 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 5 | 1 | cv 1363 | . . . . 5 class 𝑥 | 
| 6 | 5, 2 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 | 
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1363 | . . . . 5 class 𝑦 | 
| 9 | 8, 3 | wceq 1364 | . . . 4 wff 𝑦 = 𝐵 | 
| 10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) | 
| 11 | 10, 1, 7 | copab 4093 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | 
| 12 | 4, 11 | wceq 1364 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | 
| Colors of variables: wff set class | 
| This definition is referenced by: mpteq12f 4113 nfmpt 4125 nfmpt1 4126 cbvmptf 4127 cbvmpt 4128 mptv 4130 fconstmpt 4710 mptrel 4794 rnmpt 4914 resmpt 4994 mptresid 5000 mptcnv 5072 mptpreima 5163 funmpt 5296 dfmpt3 5380 mptfng 5383 mptun 5389 dffn5im 5606 fvmptss2 5636 fvmptg 5637 fndmin 5669 f1ompt 5713 fmptco 5728 mpomptx 6013 f1ocnvd 6125 f1od2 6293 dftpos4 6321 mapsncnv 6754 | 
| Copyright terms: Public domain | W3C validator |