| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-mpt | GIF version | ||
| Description: Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cmpt 4109 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 5 | 1 | cv 1372 | . . . . 5 class 𝑥 |
| 6 | 5, 2 | wcel 2177 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | vy | . . . . . 6 setvar 𝑦 | |
| 8 | 7 | cv 1372 | . . . . 5 class 𝑦 |
| 9 | 8, 3 | wceq 1373 | . . . 4 wff 𝑦 = 𝐵 |
| 10 | 6, 9 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
| 11 | 10, 1, 7 | copab 4108 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 12 | 4, 11 | wceq 1373 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| Colors of variables: wff set class |
| This definition is referenced by: mpteq12f 4128 nfmpt 4140 nfmpt1 4141 cbvmptf 4142 cbvmpt 4143 mptv 4145 fconstmpt 4726 mptrel 4810 rnmpt 4931 resmpt 5012 mptresid 5018 mptcnv 5090 mptpreima 5181 funmpt 5314 dfmpt3 5404 mptfng 5407 mptun 5413 dffn5im 5631 fvmptss2 5661 fvmptg 5662 fndmin 5694 f1ompt 5738 fmptco 5753 mpomptx 6043 f1ocnvd 6155 f1od2 6328 dftpos4 6356 mapsncnv 6789 |
| Copyright terms: Public domain | W3C validator |