ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffun GIF version

Theorem nffun 5241
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1 𝑥𝐹
Assertion
Ref Expression
nffun 𝑥Fun 𝐹

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5220 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
2 nffun.1 . . . 4 𝑥𝐹
32nfrel 4713 . . 3 𝑥Rel 𝐹
42nfcnv 4808 . . . . 5 𝑥𝐹
52, 4nfco 4794 . . . 4 𝑥(𝐹𝐹)
6 nfcv 2319 . . . 4 𝑥 I
75, 6nfss 3150 . . 3 𝑥(𝐹𝐹) ⊆ I
83, 7nfan 1565 . 2 𝑥(Rel 𝐹 ∧ (𝐹𝐹) ⊆ I )
91, 8nfxfr 1474 1 𝑥Fun 𝐹
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1460  wnfc 2306  wss 3131   I cid 4290  ccnv 4627  ccom 4632  Rel wrel 4633  Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-rel 4635  df-cnv 4636  df-co 4637  df-fun 5220
This theorem is referenced by:  nffn  5314  nff1  5421  fliftfun  5799
  Copyright terms: Public domain W3C validator