ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffun GIF version

Theorem nffun 5277
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1 𝑥𝐹
Assertion
Ref Expression
nffun 𝑥Fun 𝐹

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5256 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
2 nffun.1 . . . 4 𝑥𝐹
32nfrel 4744 . . 3 𝑥Rel 𝐹
42nfcnv 4841 . . . . 5 𝑥𝐹
52, 4nfco 4827 . . . 4 𝑥(𝐹𝐹)
6 nfcv 2336 . . . 4 𝑥 I
75, 6nfss 3172 . . 3 𝑥(𝐹𝐹) ⊆ I
83, 7nfan 1576 . 2 𝑥(Rel 𝐹 ∧ (𝐹𝐹) ⊆ I )
91, 8nfxfr 1485 1 𝑥Fun 𝐹
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1471  wnfc 2323  wss 3153   I cid 4319  ccnv 4658  ccom 4663  Rel wrel 4664  Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-fun 5256
This theorem is referenced by:  nffn  5350  nff1  5457  fliftfun  5839
  Copyright terms: Public domain W3C validator