| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffun | GIF version | ||
| Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| nffun.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nffun | ⊢ Ⅎ𝑥Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 5316 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
| 2 | nffun.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2 | nfrel 4801 | . . 3 ⊢ Ⅎ𝑥Rel 𝐹 |
| 4 | 2 | nfcnv 4898 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
| 5 | 2, 4 | nfco 4884 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) |
| 6 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥 I | |
| 7 | 5, 6 | nfss 3217 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) ⊆ I |
| 8 | 3, 7 | nfan 1611 | . 2 ⊢ Ⅎ𝑥(Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I ) |
| 9 | 1, 8 | nfxfr 1520 | 1 ⊢ Ⅎ𝑥Fun 𝐹 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 Ⅎwnf 1506 Ⅎwnfc 2359 ⊆ wss 3197 I cid 4376 ◡ccnv 4715 ∘ ccom 4720 Rel wrel 4721 Fun wfun 5308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-rel 4723 df-cnv 4724 df-co 4725 df-fun 5316 |
| This theorem is referenced by: nffn 5413 nff1 5525 fliftfun 5913 |
| Copyright terms: Public domain | W3C validator |