Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffun | GIF version |
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
nffun.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nffun | ⊢ Ⅎ𝑥Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5200 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
2 | nffun.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nfrel 4696 | . . 3 ⊢ Ⅎ𝑥Rel 𝐹 |
4 | 2 | nfcnv 4790 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
5 | 2, 4 | nfco 4776 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) |
6 | nfcv 2312 | . . . 4 ⊢ Ⅎ𝑥 I | |
7 | 5, 6 | nfss 3140 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) ⊆ I |
8 | 3, 7 | nfan 1558 | . 2 ⊢ Ⅎ𝑥(Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I ) |
9 | 1, 8 | nfxfr 1467 | 1 ⊢ Ⅎ𝑥Fun 𝐹 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 Ⅎwnf 1453 Ⅎwnfc 2299 ⊆ wss 3121 I cid 4273 ◡ccnv 4610 ∘ ccom 4615 Rel wrel 4616 Fun wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-fun 5200 |
This theorem is referenced by: nffn 5294 nff1 5401 fliftfun 5775 |
Copyright terms: Public domain | W3C validator |