ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffun GIF version

Theorem nffun 5300
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1 𝑥𝐹
Assertion
Ref Expression
nffun 𝑥Fun 𝐹

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5279 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
2 nffun.1 . . . 4 𝑥𝐹
32nfrel 4765 . . 3 𝑥Rel 𝐹
42nfcnv 4862 . . . . 5 𝑥𝐹
52, 4nfco 4848 . . . 4 𝑥(𝐹𝐹)
6 nfcv 2349 . . . 4 𝑥 I
75, 6nfss 3188 . . 3 𝑥(𝐹𝐹) ⊆ I
83, 7nfan 1589 . 2 𝑥(Rel 𝐹 ∧ (𝐹𝐹) ⊆ I )
91, 8nfxfr 1498 1 𝑥Fun 𝐹
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1484  wnfc 2336  wss 3168   I cid 4340  ccnv 4679  ccom 4684  Rel wrel 4685  Fun wfun 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-rel 4687  df-cnv 4688  df-co 4689  df-fun 5279
This theorem is referenced by:  nffn  5376  nff1  5488  fliftfun  5875
  Copyright terms: Public domain W3C validator