| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffun | GIF version | ||
| Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| nffun.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nffun | ⊢ Ⅎ𝑥Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 5279 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
| 2 | nffun.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2 | nfrel 4765 | . . 3 ⊢ Ⅎ𝑥Rel 𝐹 |
| 4 | 2 | nfcnv 4862 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
| 5 | 2, 4 | nfco 4848 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) |
| 6 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑥 I | |
| 7 | 5, 6 | nfss 3188 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) ⊆ I |
| 8 | 3, 7 | nfan 1589 | . 2 ⊢ Ⅎ𝑥(Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I ) |
| 9 | 1, 8 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥Fun 𝐹 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 Ⅎwnf 1484 Ⅎwnfc 2336 ⊆ wss 3168 I cid 4340 ◡ccnv 4679 ∘ ccom 4684 Rel wrel 4685 Fun wfun 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-rel 4687 df-cnv 4688 df-co 4689 df-fun 5279 |
| This theorem is referenced by: nffn 5376 nff1 5488 fliftfun 5875 |
| Copyright terms: Public domain | W3C validator |