![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nffun | GIF version |
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
nffun.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nffun | ⊢ Ⅎ𝑥Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5220 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
2 | nffun.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nfrel 4713 | . . 3 ⊢ Ⅎ𝑥Rel 𝐹 |
4 | 2 | nfcnv 4808 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
5 | 2, 4 | nfco 4794 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) |
6 | nfcv 2319 | . . . 4 ⊢ Ⅎ𝑥 I | |
7 | 5, 6 | nfss 3150 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) ⊆ I |
8 | 3, 7 | nfan 1565 | . 2 ⊢ Ⅎ𝑥(Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I ) |
9 | 1, 8 | nfxfr 1474 | 1 ⊢ Ⅎ𝑥Fun 𝐹 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 Ⅎwnf 1460 Ⅎwnfc 2306 ⊆ wss 3131 I cid 4290 ◡ccnv 4627 ∘ ccom 4632 Rel wrel 4633 Fun wfun 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-rel 4635 df-cnv 4636 df-co 4637 df-fun 5220 |
This theorem is referenced by: nffn 5314 nff1 5421 fliftfun 5800 |
Copyright terms: Public domain | W3C validator |