Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffun | GIF version |
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
nffun.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nffun | ⊢ Ⅎ𝑥Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5190 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
2 | nffun.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nfrel 4689 | . . 3 ⊢ Ⅎ𝑥Rel 𝐹 |
4 | 2 | nfcnv 4783 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
5 | 2, 4 | nfco 4769 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) |
6 | nfcv 2308 | . . . 4 ⊢ Ⅎ𝑥 I | |
7 | 5, 6 | nfss 3135 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) ⊆ I |
8 | 3, 7 | nfan 1553 | . 2 ⊢ Ⅎ𝑥(Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I ) |
9 | 1, 8 | nfxfr 1462 | 1 ⊢ Ⅎ𝑥Fun 𝐹 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 Ⅎwnf 1448 Ⅎwnfc 2295 ⊆ wss 3116 I cid 4266 ◡ccnv 4603 ∘ ccom 4608 Rel wrel 4609 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-fun 5190 |
This theorem is referenced by: nffn 5284 nff1 5391 fliftfun 5764 |
Copyright terms: Public domain | W3C validator |