![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nffun | GIF version |
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
nffun.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nffun | ⊢ Ⅎ𝑥Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 5256 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
2 | nffun.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nfrel 4744 | . . 3 ⊢ Ⅎ𝑥Rel 𝐹 |
4 | 2 | nfcnv 4841 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
5 | 2, 4 | nfco 4827 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) |
6 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑥 I | |
7 | 5, 6 | nfss 3172 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) ⊆ I |
8 | 3, 7 | nfan 1576 | . 2 ⊢ Ⅎ𝑥(Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I ) |
9 | 1, 8 | nfxfr 1485 | 1 ⊢ Ⅎ𝑥Fun 𝐹 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 Ⅎwnf 1471 Ⅎwnfc 2323 ⊆ wss 3153 I cid 4319 ◡ccnv 4658 ∘ ccom 4663 Rel wrel 4664 Fun wfun 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-rel 4666 df-cnv 4667 df-co 4668 df-fun 5256 |
This theorem is referenced by: nffn 5350 nff1 5457 fliftfun 5839 |
Copyright terms: Public domain | W3C validator |