ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffun GIF version

Theorem nffun 5337
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1 𝑥𝐹
Assertion
Ref Expression
nffun 𝑥Fun 𝐹

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5316 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
2 nffun.1 . . . 4 𝑥𝐹
32nfrel 4801 . . 3 𝑥Rel 𝐹
42nfcnv 4898 . . . . 5 𝑥𝐹
52, 4nfco 4884 . . . 4 𝑥(𝐹𝐹)
6 nfcv 2372 . . . 4 𝑥 I
75, 6nfss 3217 . . 3 𝑥(𝐹𝐹) ⊆ I
83, 7nfan 1611 . 2 𝑥(Rel 𝐹 ∧ (𝐹𝐹) ⊆ I )
91, 8nfxfr 1520 1 𝑥Fun 𝐹
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1506  wnfc 2359  wss 3197   I cid 4376  ccnv 4715  ccom 4720  Rel wrel 4721  Fun wfun 5308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-rel 4723  df-cnv 4724  df-co 4725  df-fun 5316
This theorem is referenced by:  nffn  5413  nff1  5525  fliftfun  5913
  Copyright terms: Public domain W3C validator