ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffun GIF version

Theorem nffun 5211
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1 𝑥𝐹
Assertion
Ref Expression
nffun 𝑥Fun 𝐹

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5190 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
2 nffun.1 . . . 4 𝑥𝐹
32nfrel 4689 . . 3 𝑥Rel 𝐹
42nfcnv 4783 . . . . 5 𝑥𝐹
52, 4nfco 4769 . . . 4 𝑥(𝐹𝐹)
6 nfcv 2308 . . . 4 𝑥 I
75, 6nfss 3135 . . 3 𝑥(𝐹𝐹) ⊆ I
83, 7nfan 1553 . 2 𝑥(Rel 𝐹 ∧ (𝐹𝐹) ⊆ I )
91, 8nfxfr 1462 1 𝑥Fun 𝐹
Colors of variables: wff set class
Syntax hints:  wa 103  wnf 1448  wnfc 2295  wss 3116   I cid 4266  ccnv 4603  ccom 4608  Rel wrel 4609  Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-fun 5190
This theorem is referenced by:  nffn  5284  nff1  5391  fliftfun  5764
  Copyright terms: Public domain W3C validator