ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun7 GIF version

Theorem dffun7 5286
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 5287 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
dffun7 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dffun7
StepHypRef Expression
1 dffun6 5273 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
2 moabs 2094 . . . . . 6 (∃*𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 → ∃*𝑦 𝑥𝐴𝑦))
3 vex 2766 . . . . . . . 8 𝑥 ∈ V
43eldm 4864 . . . . . . 7 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦)
54imbi1i 238 . . . . . 6 ((𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦) ↔ (∃𝑦 𝑥𝐴𝑦 → ∃*𝑦 𝑥𝐴𝑦))
62, 5bitr4i 187 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦))
76albii 1484 . . . 4 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦))
8 df-ral 2480 . . . 4 (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦))
97, 8bitr4i 187 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)
109anbi2i 457 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
111, 10bitri 184 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wex 1506  ∃*wmo 2046  wcel 2167  wral 2475   class class class wbr 4034  dom cdm 4664  Rel wrel 4669  Fun wfun 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-cnv 4672  df-co 4673  df-dm 4674  df-fun 5261
This theorem is referenced by:  dffun8  5287  dffun9  5288  funco  5299  funimaexglem  5342  frecuzrdgtcl  10521  frecuzrdgfunlem  10528  imasaddfnlemg  13016
  Copyright terms: Public domain W3C validator