Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffun7 | GIF version |
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 5226 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
dffun7 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun6 5212 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | |
2 | moabs 2068 | . . . . . 6 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 → ∃*𝑦 𝑥𝐴𝑦)) | |
3 | vex 2733 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm 4808 | . . . . . . 7 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦) |
5 | 4 | imbi1i 237 | . . . . . 6 ⊢ ((𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦) ↔ (∃𝑦 𝑥𝐴𝑦 → ∃*𝑦 𝑥𝐴𝑦)) |
6 | 2, 5 | bitr4i 186 | . . . . 5 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦)) |
7 | 6 | albii 1463 | . . . 4 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦)) |
8 | df-ral 2453 | . . . 4 ⊢ (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦)) | |
9 | 7, 8 | bitr4i 186 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) |
10 | 9 | anbi2i 454 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) |
11 | 1, 10 | bitri 183 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 ∃wex 1485 ∃*wmo 2020 ∈ wcel 2141 ∀wral 2448 class class class wbr 3989 dom cdm 4611 Rel wrel 4616 Fun wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-cnv 4619 df-co 4620 df-dm 4621 df-fun 5200 |
This theorem is referenced by: dffun8 5226 dffun9 5227 funco 5238 funimaexglem 5281 frecuzrdgtcl 10368 frecuzrdgfunlem 10375 |
Copyright terms: Public domain | W3C validator |