Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun7 GIF version

Theorem dffun7 5106
 Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one." However, dffun8 5107 shows that it doesn't matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
dffun7 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dffun7
StepHypRef Expression
1 dffun6 5093 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
2 moabs 2022 . . . . . 6 (∃*𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 → ∃*𝑦 𝑥𝐴𝑦))
3 vex 2658 . . . . . . . 8 𝑥 ∈ V
43eldm 4694 . . . . . . 7 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦)
54imbi1i 237 . . . . . 6 ((𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦) ↔ (∃𝑦 𝑥𝐴𝑦 → ∃*𝑦 𝑥𝐴𝑦))
62, 5bitr4i 186 . . . . 5 (∃*𝑦 𝑥𝐴𝑦 ↔ (𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦))
76albii 1427 . . . 4 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦))
8 df-ral 2393 . . . 4 (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(𝑥 ∈ dom 𝐴 → ∃*𝑦 𝑥𝐴𝑦))
97, 8bitr4i 186 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)
109anbi2i 450 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
111, 10bitri 183 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104  ∀wal 1310  ∃wex 1449   ∈ wcel 1461  ∃*wmo 1974  ∀wral 2388   class class class wbr 3893  dom cdm 4497  Rel wrel 4502  Fun wfun 5073 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089 This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-id 4173  df-cnv 4505  df-co 4506  df-dm 4507  df-fun 5081 This theorem is referenced by:  dffun8  5107  dffun9  5108  funco  5119  funimaexglem  5162  frecuzrdgtcl  10072  frecuzrdgfunlem  10079
 Copyright terms: Public domain W3C validator