Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dral2 GIF version

Theorem dral2 1710
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Hypothesis
Ref Expression
dral2.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dral2 (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓))

Proof of Theorem dral2
StepHypRef Expression
1 hbae 1697 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
2 dral2.1 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2albidh 1457 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104  ∀wal 1330 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515 This theorem depends on definitions:  df-bi 116 This theorem is referenced by:  drnf2  1713  equveli  1733  drnfc1  2299  drnfc2  2300
 Copyright terms: Public domain W3C validator