| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dveel2 | GIF version | ||
| Description: Quantifier introduction when one pair of variables is disjoint. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| dveel2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1548 | . 2 ⊢ (𝑧 ∈ 𝑤 → ∀𝑥 𝑧 ∈ 𝑤) | |
| 2 | ax-17 1548 | . 2 ⊢ (𝑧 ∈ 𝑦 → ∀𝑤 𝑧 ∈ 𝑦) | |
| 3 | elequ2 2180 | . 2 ⊢ (𝑤 = 𝑦 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦)) | |
| 4 | 1, 2, 3 | dvelimf 2042 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |