Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dveel2 | GIF version |
Description: Quantifier introduction when one pair of variables is disjoint. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
dveel2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 ⊢ (𝑧 ∈ 𝑤 → ∀𝑥 𝑧 ∈ 𝑤) | |
2 | ax-17 1514 | . 2 ⊢ (𝑧 ∈ 𝑦 → ∀𝑤 𝑧 ∈ 𝑦) | |
3 | elequ2 2141 | . 2 ⊢ (𝑤 = 𝑦 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦)) | |
4 | 1, 2, 3 | dvelimf 2003 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |