ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveel2 GIF version

Theorem dveel2 2177
Description: Quantifier introduction when one pair of variables is disjoint. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
dveel2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveel2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-17 1540 . 2 (𝑧𝑤 → ∀𝑥 𝑧𝑤)
2 ax-17 1540 . 2 (𝑧𝑦 → ∀𝑤 𝑧𝑦)
3 elequ2 2172 . 2 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
41, 2, 3dvelimf 2034 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator