| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqf1olemklt | GIF version | ||
| Description: Lemma for seq3f1o 10699. (Contributed by Jim Kingdon, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| iseqf1olemklt.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| iseqf1olemklt.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| iseqf1olemklt.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| iseqf1olemklt.const | ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
| iseqf1olemklt.kj | ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) |
| Ref | Expression |
|---|---|
| iseqf1olemklt | ⊢ (𝜑 → 𝐾 < (◡𝐽‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemklt.kj | . . 3 ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) | |
| 2 | 1 | neneqd 2399 | . 2 ⊢ (𝜑 → ¬ 𝐾 = (◡𝐽‘𝐾)) |
| 3 | iseqf1olemklt.j | . . . . . 6 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
| 4 | 3 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 5 | iseqf1olemklt.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
| 6 | 5 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 ∈ (𝑀...𝑁)) |
| 7 | f1ocnvfv2 5870 | . . . . 5 ⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) | |
| 8 | 4, 6, 7 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
| 9 | fveq2 5599 | . . . . . 6 ⊢ (𝑥 = (◡𝐽‘𝐾) → (𝐽‘𝑥) = (𝐽‘(◡𝐽‘𝐾))) | |
| 10 | id 19 | . . . . . 6 ⊢ (𝑥 = (◡𝐽‘𝐾) → 𝑥 = (◡𝐽‘𝐾)) | |
| 11 | 9, 10 | eqeq12d 2222 | . . . . 5 ⊢ (𝑥 = (◡𝐽‘𝐾) → ((𝐽‘𝑥) = 𝑥 ↔ (𝐽‘(◡𝐽‘𝐾)) = (◡𝐽‘𝐾))) |
| 12 | iseqf1olemklt.const | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) | |
| 13 | 12 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
| 14 | f1ocnv 5557 | . . . . . . . . . . 11 ⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
| 15 | 3, 14 | syl 14 | . . . . . . . . . 10 ⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 16 | f1of 5544 | . . . . . . . . . 10 ⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | |
| 17 | 15, 16 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 18 | 17, 5 | ffvelcdmd 5739 | . . . . . . . 8 ⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
| 19 | elfzuz 10178 | . . . . . . . 8 ⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) | |
| 20 | 18, 19 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) |
| 21 | 20 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) |
| 22 | elfzelz 10182 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
| 23 | 5, 22 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 24 | 23 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 ∈ ℤ) |
| 25 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) < 𝐾) | |
| 26 | elfzo2 10307 | . . . . . 6 ⊢ ((◡𝐽‘𝐾) ∈ (𝑀..^𝐾) ↔ ((◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) < 𝐾)) | |
| 27 | 21, 24, 25, 26 | syl3anbrc 1184 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) ∈ (𝑀..^𝐾)) |
| 28 | 11, 13, 27 | rspcdva 2889 | . . . 4 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (𝐽‘(◡𝐽‘𝐾)) = (◡𝐽‘𝐾)) |
| 29 | 8, 28 | eqtr3d 2242 | . . 3 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 = (◡𝐽‘𝐾)) |
| 30 | 2, 29 | mtand 667 | . 2 ⊢ (𝜑 → ¬ (◡𝐽‘𝐾) < 𝐾) |
| 31 | elfzelz 10182 | . . . 4 ⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) | |
| 32 | 18, 31 | syl 14 | . . 3 ⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) |
| 33 | ztri3or 9450 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) → (𝐾 < (◡𝐽‘𝐾) ∨ 𝐾 = (◡𝐽‘𝐾) ∨ (◡𝐽‘𝐾) < 𝐾)) | |
| 34 | 23, 32, 33 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐾 < (◡𝐽‘𝐾) ∨ 𝐾 = (◡𝐽‘𝐾) ∨ (◡𝐽‘𝐾) < 𝐾)) |
| 35 | 2, 30, 34 | ecase23d 1363 | 1 ⊢ (𝜑 → 𝐾 < (◡𝐽‘𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ w3o 980 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ∀wral 2486 class class class wbr 4059 ◡ccnv 4692 ⟶wf 5286 –1-1-onto→wf1o 5289 ‘cfv 5290 (class class class)co 5967 < clt 8142 ℤcz 9407 ℤ≥cuz 9683 ...cfz 10165 ..^cfzo 10299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 |
| This theorem is referenced by: seq3f1olemqsumkj 10693 |
| Copyright terms: Public domain | W3C validator |