ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemklt GIF version

Theorem iseqf1olemklt 10645
Description: Lemma for seq3f1o 10664. (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemklt.n (𝜑𝑁 ∈ (ℤ𝑀))
iseqf1olemklt.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemklt.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemklt.const (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
iseqf1olemklt.kj (𝜑𝐾 ≠ (𝐽𝐾))
Assertion
Ref Expression
iseqf1olemklt (𝜑𝐾 < (𝐽𝐾))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝑁(𝑥)

Proof of Theorem iseqf1olemklt
StepHypRef Expression
1 iseqf1olemklt.kj . . 3 (𝜑𝐾 ≠ (𝐽𝐾))
21neneqd 2397 . 2 (𝜑 → ¬ 𝐾 = (𝐽𝐾))
3 iseqf1olemklt.j . . . . . 6 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
43adantr 276 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
5 iseqf1olemklt.k . . . . . 6 (𝜑𝐾 ∈ (𝑀...𝑁))
65adantr 276 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ∈ (𝑀...𝑁))
7 f1ocnvfv2 5849 . . . . 5 ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(𝐽𝐾)) = 𝐾)
84, 6, 7syl2anc 411 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽‘(𝐽𝐾)) = 𝐾)
9 fveq2 5578 . . . . . 6 (𝑥 = (𝐽𝐾) → (𝐽𝑥) = (𝐽‘(𝐽𝐾)))
10 id 19 . . . . . 6 (𝑥 = (𝐽𝐾) → 𝑥 = (𝐽𝐾))
119, 10eqeq12d 2220 . . . . 5 (𝑥 = (𝐽𝐾) → ((𝐽𝑥) = 𝑥 ↔ (𝐽‘(𝐽𝐾)) = (𝐽𝐾)))
12 iseqf1olemklt.const . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
1312adantr 276 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)
14 f1ocnv 5537 . . . . . . . . . . 11 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
153, 14syl 14 . . . . . . . . . 10 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
16 f1of 5524 . . . . . . . . . 10 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
1715, 16syl 14 . . . . . . . . 9 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
1817, 5ffvelcdmd 5718 . . . . . . . 8 (𝜑 → (𝐽𝐾) ∈ (𝑀...𝑁))
19 elfzuz 10145 . . . . . . . 8 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ (ℤ𝑀))
2018, 19syl 14 . . . . . . 7 (𝜑 → (𝐽𝐾) ∈ (ℤ𝑀))
2120adantr 276 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) ∈ (ℤ𝑀))
22 elfzelz 10149 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
235, 22syl 14 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
2423adantr 276 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 ∈ ℤ)
25 simpr 110 . . . . . 6 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) < 𝐾)
26 elfzo2 10274 . . . . . 6 ((𝐽𝐾) ∈ (𝑀..^𝐾) ↔ ((𝐽𝐾) ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ ∧ (𝐽𝐾) < 𝐾))
2721, 24, 25, 26syl3anbrc 1184 . . . . 5 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽𝐾) ∈ (𝑀..^𝐾))
2811, 13, 27rspcdva 2882 . . . 4 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → (𝐽‘(𝐽𝐾)) = (𝐽𝐾))
298, 28eqtr3d 2240 . . 3 ((𝜑 ∧ (𝐽𝐾) < 𝐾) → 𝐾 = (𝐽𝐾))
302, 29mtand 667 . 2 (𝜑 → ¬ (𝐽𝐾) < 𝐾)
31 elfzelz 10149 . . . 4 ((𝐽𝐾) ∈ (𝑀...𝑁) → (𝐽𝐾) ∈ ℤ)
3218, 31syl 14 . . 3 (𝜑 → (𝐽𝐾) ∈ ℤ)
33 ztri3or 9417 . . 3 ((𝐾 ∈ ℤ ∧ (𝐽𝐾) ∈ ℤ) → (𝐾 < (𝐽𝐾) ∨ 𝐾 = (𝐽𝐾) ∨ (𝐽𝐾) < 𝐾))
3423, 32, 33syl2anc 411 . 2 (𝜑 → (𝐾 < (𝐽𝐾) ∨ 𝐾 = (𝐽𝐾) ∨ (𝐽𝐾) < 𝐾))
352, 30, 34ecase23d 1363 1 (𝜑𝐾 < (𝐽𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 980   = wceq 1373  wcel 2176  wne 2376  wral 2484   class class class wbr 4045  ccnv 4675  wf 5268  1-1-ontowf1o 5271  cfv 5272  (class class class)co 5946   < clt 8109  cz 9374  cuz 9650  ...cfz 10132  ..^cfzo 10266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133  df-fzo 10267
This theorem is referenced by:  seq3f1olemqsumkj  10658
  Copyright terms: Public domain W3C validator