Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iseqf1olemklt | GIF version |
Description: Lemma for seq3f1o 10439. (Contributed by Jim Kingdon, 21-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemklt.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
iseqf1olemklt.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
iseqf1olemklt.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
iseqf1olemklt.const | ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
iseqf1olemklt.kj | ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) |
Ref | Expression |
---|---|
iseqf1olemklt | ⊢ (𝜑 → 𝐾 < (◡𝐽‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemklt.kj | . . 3 ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) | |
2 | 1 | neneqd 2357 | . 2 ⊢ (𝜑 → ¬ 𝐾 = (◡𝐽‘𝐾)) |
3 | iseqf1olemklt.j | . . . . . 6 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
4 | 3 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
5 | iseqf1olemklt.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
6 | 5 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 ∈ (𝑀...𝑁)) |
7 | f1ocnvfv2 5746 | . . . . 5 ⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) | |
8 | 4, 6, 7 | syl2anc 409 | . . . 4 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
9 | fveq2 5486 | . . . . . 6 ⊢ (𝑥 = (◡𝐽‘𝐾) → (𝐽‘𝑥) = (𝐽‘(◡𝐽‘𝐾))) | |
10 | id 19 | . . . . . 6 ⊢ (𝑥 = (◡𝐽‘𝐾) → 𝑥 = (◡𝐽‘𝐾)) | |
11 | 9, 10 | eqeq12d 2180 | . . . . 5 ⊢ (𝑥 = (◡𝐽‘𝐾) → ((𝐽‘𝑥) = 𝑥 ↔ (𝐽‘(◡𝐽‘𝐾)) = (◡𝐽‘𝐾))) |
12 | iseqf1olemklt.const | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) | |
13 | 12 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
14 | f1ocnv 5445 | . . . . . . . . . . 11 ⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
15 | 3, 14 | syl 14 | . . . . . . . . . 10 ⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
16 | f1of 5432 | . . . . . . . . . 10 ⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | |
17 | 15, 16 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
18 | 17, 5 | ffvelrnd 5621 | . . . . . . . 8 ⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
19 | elfzuz 9956 | . . . . . . . 8 ⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) | |
20 | 18, 19 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) |
21 | 20 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) |
22 | elfzelz 9960 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
23 | 5, 22 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
24 | 23 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 ∈ ℤ) |
25 | simpr 109 | . . . . . 6 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) < 𝐾) | |
26 | elfzo2 10085 | . . . . . 6 ⊢ ((◡𝐽‘𝐾) ∈ (𝑀..^𝐾) ↔ ((◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) < 𝐾)) | |
27 | 21, 24, 25, 26 | syl3anbrc 1171 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) ∈ (𝑀..^𝐾)) |
28 | 11, 13, 27 | rspcdva 2835 | . . . 4 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (𝐽‘(◡𝐽‘𝐾)) = (◡𝐽‘𝐾)) |
29 | 8, 28 | eqtr3d 2200 | . . 3 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 = (◡𝐽‘𝐾)) |
30 | 2, 29 | mtand 655 | . 2 ⊢ (𝜑 → ¬ (◡𝐽‘𝐾) < 𝐾) |
31 | elfzelz 9960 | . . . 4 ⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) | |
32 | 18, 31 | syl 14 | . . 3 ⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) |
33 | ztri3or 9234 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) → (𝐾 < (◡𝐽‘𝐾) ∨ 𝐾 = (◡𝐽‘𝐾) ∨ (◡𝐽‘𝐾) < 𝐾)) | |
34 | 23, 32, 33 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝐾 < (◡𝐽‘𝐾) ∨ 𝐾 = (◡𝐽‘𝐾) ∨ (◡𝐽‘𝐾) < 𝐾)) |
35 | 2, 30, 34 | ecase23d 1340 | 1 ⊢ (𝜑 → 𝐾 < (◡𝐽‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 class class class wbr 3982 ◡ccnv 4603 ⟶wf 5184 –1-1-onto→wf1o 5187 ‘cfv 5188 (class class class)co 5842 < clt 7933 ℤcz 9191 ℤ≥cuz 9466 ...cfz 9944 ..^cfzo 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 |
This theorem is referenced by: seq3f1olemqsumkj 10433 |
Copyright terms: Public domain | W3C validator |