| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqf1olemklt | GIF version | ||
| Description: Lemma for seq3f1o 10609. (Contributed by Jim Kingdon, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| iseqf1olemklt.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| iseqf1olemklt.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| iseqf1olemklt.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| iseqf1olemklt.const | ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
| iseqf1olemklt.kj | ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) |
| Ref | Expression |
|---|---|
| iseqf1olemklt | ⊢ (𝜑 → 𝐾 < (◡𝐽‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemklt.kj | . . 3 ⊢ (𝜑 → 𝐾 ≠ (◡𝐽‘𝐾)) | |
| 2 | 1 | neneqd 2388 | . 2 ⊢ (𝜑 → ¬ 𝐾 = (◡𝐽‘𝐾)) |
| 3 | iseqf1olemklt.j | . . . . . 6 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
| 4 | 3 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 5 | iseqf1olemklt.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
| 6 | 5 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 ∈ (𝑀...𝑁)) |
| 7 | f1ocnvfv2 5825 | . . . . 5 ⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) | |
| 8 | 4, 6, 7 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (𝐽‘(◡𝐽‘𝐾)) = 𝐾) |
| 9 | fveq2 5558 | . . . . . 6 ⊢ (𝑥 = (◡𝐽‘𝐾) → (𝐽‘𝑥) = (𝐽‘(◡𝐽‘𝐾))) | |
| 10 | id 19 | . . . . . 6 ⊢ (𝑥 = (◡𝐽‘𝐾) → 𝑥 = (◡𝐽‘𝐾)) | |
| 11 | 9, 10 | eqeq12d 2211 | . . . . 5 ⊢ (𝑥 = (◡𝐽‘𝐾) → ((𝐽‘𝑥) = 𝑥 ↔ (𝐽‘(◡𝐽‘𝐾)) = (◡𝐽‘𝐾))) |
| 12 | iseqf1olemklt.const | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) | |
| 13 | 12 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
| 14 | f1ocnv 5517 | . . . . . . . . . . 11 ⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
| 15 | 3, 14 | syl 14 | . . . . . . . . . 10 ⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 16 | f1of 5504 | . . . . . . . . . 10 ⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) | |
| 17 | 15, 16 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 18 | 17, 5 | ffvelcdmd 5698 | . . . . . . . 8 ⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
| 19 | elfzuz 10096 | . . . . . . . 8 ⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) | |
| 20 | 18, 19 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) |
| 21 | 20 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀)) |
| 22 | elfzelz 10100 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
| 23 | 5, 22 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 24 | 23 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 ∈ ℤ) |
| 25 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) < 𝐾) | |
| 26 | elfzo2 10225 | . . . . . 6 ⊢ ((◡𝐽‘𝐾) ∈ (𝑀..^𝐾) ↔ ((◡𝐽‘𝐾) ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) < 𝐾)) | |
| 27 | 21, 24, 25, 26 | syl3anbrc 1183 | . . . . 5 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (◡𝐽‘𝐾) ∈ (𝑀..^𝐾)) |
| 28 | 11, 13, 27 | rspcdva 2873 | . . . 4 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → (𝐽‘(◡𝐽‘𝐾)) = (◡𝐽‘𝐾)) |
| 29 | 8, 28 | eqtr3d 2231 | . . 3 ⊢ ((𝜑 ∧ (◡𝐽‘𝐾) < 𝐾) → 𝐾 = (◡𝐽‘𝐾)) |
| 30 | 2, 29 | mtand 666 | . 2 ⊢ (𝜑 → ¬ (◡𝐽‘𝐾) < 𝐾) |
| 31 | elfzelz 10100 | . . . 4 ⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) | |
| 32 | 18, 31 | syl 14 | . . 3 ⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) |
| 33 | ztri3or 9369 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) → (𝐾 < (◡𝐽‘𝐾) ∨ 𝐾 = (◡𝐽‘𝐾) ∨ (◡𝐽‘𝐾) < 𝐾)) | |
| 34 | 23, 32, 33 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐾 < (◡𝐽‘𝐾) ∨ 𝐾 = (◡𝐽‘𝐾) ∨ (◡𝐽‘𝐾) < 𝐾)) |
| 35 | 2, 30, 34 | ecase23d 1361 | 1 ⊢ (𝜑 → 𝐾 < (◡𝐽‘𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 class class class wbr 4033 ◡ccnv 4662 ⟶wf 5254 –1-1-onto→wf1o 5257 ‘cfv 5258 (class class class)co 5922 < clt 8061 ℤcz 9326 ℤ≥cuz 9601 ...cfz 10083 ..^cfzo 10217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 |
| This theorem is referenced by: seq3f1olemqsumkj 10603 |
| Copyright terms: Public domain | W3C validator |