Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemlub GIF version

Theorem xrmaxiflemlub 11050
 Description: Lemma for xrmaxif 11053. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 28-Apr-2023.)
Hypotheses
Ref Expression
xrmaxiflemlub.a (𝜑𝐴 ∈ ℝ*)
xrmaxiflemlub.b (𝜑𝐵 ∈ ℝ*)
xrmaxiflemlub.c (𝜑𝐶 ∈ ℝ*)
xrmaxiflemlub.clt (𝜑𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
Assertion
Ref Expression
xrmaxiflemlub (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))

Proof of Theorem xrmaxiflemlub
StepHypRef Expression
1 xrmaxiflemlub.clt . . 3 (𝜑𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
2 xrmaxiflemlub.c . . . 4 (𝜑𝐶 ∈ ℝ*)
3 xrmaxiflemlub.a . . . . 5 (𝜑𝐴 ∈ ℝ*)
4 xrmaxiflemlub.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
5 xrmaxiflemcl 11047 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*)
63, 4, 5syl2anc 409 . . . 4 (𝜑 → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*)
7 xrltso 9613 . . . . 5 < Or ℝ*
8 sowlin 4250 . . . . 5 (( < Or ℝ* ∧ (𝐶 ∈ ℝ* ∧ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*𝐴 ∈ ℝ*)) → (𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) → (𝐶 < 𝐴𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))))
97, 8mpan 421 . . . 4 ((𝐶 ∈ ℝ* ∧ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*𝐴 ∈ ℝ*) → (𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) → (𝐶 < 𝐴𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))))
102, 6, 3, 9syl3anc 1217 . . 3 (𝜑 → (𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) → (𝐶 < 𝐴𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))))
111, 10mpd 13 . 2 (𝜑 → (𝐶 < 𝐴𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))))
121adantr 274 . . . . 5 ((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) → 𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
133adantr 274 . . . . . 6 ((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) → 𝐴 ∈ ℝ*)
144adantr 274 . . . . . 6 ((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) → 𝐵 ∈ ℝ*)
15 simplr 520 . . . . . . . . 9 (((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ 𝐵 = +∞) → 𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
16 simpr 109 . . . . . . . . . 10 (((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ 𝐵 = +∞) → 𝐵 = +∞)
1716iftrued 3486 . . . . . . . . 9 (((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = +∞)
1815, 17breqtrd 3962 . . . . . . . 8 (((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ 𝐵 = +∞) → 𝐴 < +∞)
1918, 16breqtrrd 3964 . . . . . . 7 (((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
20 simplr 520 . . . . . . . . . . . 12 (((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) → 𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
21 simpr 109 . . . . . . . . . . . . 13 (((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) → ¬ 𝐵 = +∞)
2221iffalsed 3489 . . . . . . . . . . . 12 (((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
2320, 22breqtrd 3962 . . . . . . . . . . 11 (((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) → 𝐴 < if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
2423adantr 274 . . . . . . . . . 10 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴 < if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
25 simpr 109 . . . . . . . . . . 11 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐵 = -∞)
2625iftrued 3486 . . . . . . . . . 10 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = 𝐴)
2724, 26breqtrd 3962 . . . . . . . . 9 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴 < 𝐴)
28 xrltnr 9597 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
293, 28syl 14 . . . . . . . . . 10 (𝜑 → ¬ 𝐴 < 𝐴)
3029ad3antrrr 484 . . . . . . . . 9 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐴)
3127, 30pm2.21dd 610 . . . . . . . 8 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴 < 𝐵)
3223adantr 274 . . . . . . . . . . . . 13 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 < if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
33 simpr 109 . . . . . . . . . . . . . 14 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐵 = -∞)
3433iffalsed 3489 . . . . . . . . . . . . 13 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
3532, 34breqtrd 3962 . . . . . . . . . . . 12 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 < if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
3635adantr 274 . . . . . . . . . . 11 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 < if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
37 simpr 109 . . . . . . . . . . . 12 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 = +∞)
3837iftrued 3486 . . . . . . . . . . 11 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) = +∞)
3936, 38breqtrd 3962 . . . . . . . . . 10 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 < +∞)
40 nltpnft 9628 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
413, 40syl 14 . . . . . . . . . . . 12 (𝜑 → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
4241ad4antr 486 . . . . . . . . . . 11 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
4337, 42mpbid 146 . . . . . . . . . 10 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → ¬ 𝐴 < +∞)
4439, 43pm2.21dd 610 . . . . . . . . 9 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 < 𝐵)
4535adantr 274 . . . . . . . . . . . . 13 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 < if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
46 simpr 109 . . . . . . . . . . . . . 14 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → ¬ 𝐴 = +∞)
4746iffalsed 3489 . . . . . . . . . . . . 13 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) = if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
4845, 47breqtrd 3962 . . . . . . . . . . . 12 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 < if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
4948adantr 274 . . . . . . . . . . 11 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → 𝐴 < if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
50 simpr 109 . . . . . . . . . . . 12 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → 𝐴 = -∞)
5150iftrued 3486 . . . . . . . . . . 11 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) = 𝐵)
5249, 51breqtrd 3962 . . . . . . . . . 10 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → 𝐴 < 𝐵)
5329ad5antr 488 . . . . . . . . . . 11 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 < 𝐴)
54 simp-5l 533 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝜑)
55 simp-4r 532 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐵 = +∞)
5654, 55jca 304 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (𝜑 ∧ ¬ 𝐵 = +∞))
57 simpllr 524 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐵 = -∞)
5856, 57jca 304 . . . . . . . . . . . . . . 15 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞))
59 simplr 520 . . . . . . . . . . . . . . 15 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 = +∞)
6058, 59jca 304 . . . . . . . . . . . . . 14 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞))
61 simpr 109 . . . . . . . . . . . . . 14 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 = -∞)
62 simplr 520 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 = +∞)
63 simpr 109 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 = -∞)
64 elxr 9594 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
653, 64sylib 121 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
6665ad4antr 486 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
6762, 63, 66ecase23d 1329 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ)
6860, 61, 67syl2anc 409 . . . . . . . . . . . . 13 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ)
69 simp-4r 532 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐵 = +∞)
70 simpllr 524 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐵 = -∞)
71 elxr 9594 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
724, 71sylib 121 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7372ad4antr 486 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7469, 70, 73ecase23d 1329 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐵 ∈ ℝ)
7560, 61, 74syl2anc 409 . . . . . . . . . . . . 13 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐵 ∈ ℝ)
7648adantr 274 . . . . . . . . . . . . . 14 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 < if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
7761iffalsed 3489 . . . . . . . . . . . . . 14 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) = sup({𝐴, 𝐵}, ℝ, < ))
7876, 77breqtrd 3962 . . . . . . . . . . . . 13 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 < sup({𝐴, 𝐵}, ℝ, < ))
79 maxleastlt 11020 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐴 < sup({𝐴, 𝐵}, ℝ, < ))) → (𝐴 < 𝐴𝐴 < 𝐵))
8068, 75, 68, 78, 79syl22anc 1218 . . . . . . . . . . . 12 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (𝐴 < 𝐴𝐴 < 𝐵))
8180orcomd 719 . . . . . . . . . . 11 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (𝐴 < 𝐵𝐴 < 𝐴))
8253, 81ecased 1328 . . . . . . . . . 10 ((((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 < 𝐵)
83 xrmnfdc 9657 . . . . . . . . . . . 12 (𝐴 ∈ ℝ*DECID 𝐴 = -∞)
84 exmiddc 822 . . . . . . . . . . . 12 (DECID 𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
853, 83, 843syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
8685ad4antr 486 . . . . . . . . . 10 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
8752, 82, 86mpjaodan 788 . . . . . . . . 9 (((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 < 𝐵)
88 xrpnfdc 9656 . . . . . . . . . . 11 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
89 exmiddc 822 . . . . . . . . . . 11 (DECID 𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
903, 88, 893syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
9190ad3antrrr 484 . . . . . . . . 9 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
9244, 87, 91mpjaodan 788 . . . . . . . 8 ((((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 < 𝐵)
93 xrmnfdc 9657 . . . . . . . . . 10 (𝐵 ∈ ℝ*DECID 𝐵 = -∞)
94 exmiddc 822 . . . . . . . . . 10 (DECID 𝐵 = -∞ → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
954, 93, 943syl 17 . . . . . . . . 9 (𝜑 → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
9695ad2antrr 480 . . . . . . . 8 (((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
9731, 92, 96mpjaodan 788 . . . . . . 7 (((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) ∧ ¬ 𝐵 = +∞) → 𝐴 < 𝐵)
98 xrpnfdc 9656 . . . . . . . 8 (𝐵 ∈ ℝ*DECID 𝐵 = +∞)
99 exmiddc 822 . . . . . . . 8 (DECID 𝐵 = +∞ → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞))
10014, 98, 993syl 17 . . . . . . 7 ((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞))
10119, 97, 100mpjaodan 788 . . . . . 6 ((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) → 𝐴 < 𝐵)
10213, 14, 101xrmaxiflemab 11049 . . . . 5 ((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵)
10312, 102breqtrd 3962 . . . 4 ((𝜑𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) → 𝐶 < 𝐵)
104103ex 114 . . 3 (𝜑 → (𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) → 𝐶 < 𝐵))
105104orim2d 778 . 2 (𝜑 → ((𝐶 < 𝐴𝐴 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) → (𝐶 < 𝐴𝐶 < 𝐵)))
10611, 105mpd 13 1 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 698  DECID wdc 820   ∨ w3o 962   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  ifcif 3479  {cpr 3533   class class class wbr 3937   Or wor 4225  supcsup 6877  ℝcr 7644  +∞cpnf 7822  -∞cmnf 7823  ℝ*cxr 7824   < clt 7825 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7736  ax-resscn 7737  ax-1cn 7738  ax-1re 7739  ax-icn 7740  ax-addcl 7741  ax-addrcl 7742  ax-mulcl 7743  ax-mulrcl 7744  ax-addcom 7745  ax-mulcom 7746  ax-addass 7747  ax-mulass 7748  ax-distr 7749  ax-i2m1 7750  ax-0lt1 7751  ax-1rid 7752  ax-0id 7753  ax-rnegex 7754  ax-precex 7755  ax-cnre 7756  ax-pre-ltirr 7757  ax-pre-ltwlin 7758  ax-pre-lttrn 7759  ax-pre-apti 7760  ax-pre-ltadd 7761  ax-pre-mulgt0 7762  ax-pre-mulext 7763  ax-arch 7764  ax-caucvg 7765 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-pnf 7827  df-mnf 7828  df-xr 7829  df-ltxr 7830  df-le 7831  df-sub 7960  df-neg 7961  df-reap 8362  df-ap 8369  df-div 8458  df-inn 8746  df-2 8804  df-3 8805  df-4 8806  df-n0 9003  df-z 9080  df-uz 9352  df-rp 9472  df-seqfrec 10251  df-exp 10325  df-cj 10647  df-re 10648  df-im 10649  df-rsqrt 10803  df-abs 10804 This theorem is referenced by:  xrmaxiflemval  11052  xrmaxleastlt  11058
 Copyright terms: Public domain W3C validator