ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgval GIF version

Theorem mulgval 13195
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b 𝐵 = (Base‘𝐺)
mulgval.p + = (+g𝐺)
mulgval.o 0 = (0g𝐺)
mulgval.i 𝐼 = (invg𝐺)
mulgval.t · = (.g𝐺)
mulgval.s 𝑆 = seq1( + , (ℕ × {𝑋}))
Assertion
Ref Expression
mulgval ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))

Proof of Theorem mulgval
Dummy variables 𝑥 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.b . . . 4 𝐵 = (Base‘𝐺)
21basmex 12680 . . 3 (𝑋𝐵𝐺 ∈ V)
32adantl 277 . 2 ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝐺 ∈ V)
4 mulgval.p . . . . 5 + = (+g𝐺)
5 mulgval.o . . . . 5 0 = (0g𝐺)
6 mulgval.i . . . . 5 𝐼 = (invg𝐺)
7 mulgval.t . . . . 5 · = (.g𝐺)
81, 4, 5, 6, 7mulgfvalg 13194 . . . 4 (𝐺 ∈ V → · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
98adantl 277 . . 3 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
10 simpl 109 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑛 = 𝑁)
1110eqeq1d 2202 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑛 = 0 ↔ 𝑁 = 0))
1210breq2d 4042 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → (0 < 𝑛 ↔ 0 < 𝑁))
13 simpr 110 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑥 = 𝑋)
1413sneqd 3632 . . . . . . . . . 10 ((𝑛 = 𝑁𝑥 = 𝑋) → {𝑥} = {𝑋})
1514xpeq2d 4684 . . . . . . . . 9 ((𝑛 = 𝑁𝑥 = 𝑋) → (ℕ × {𝑥}) = (ℕ × {𝑋}))
1615seqeq3d 10529 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑋})))
17 mulgval.s . . . . . . . 8 𝑆 = seq1( + , (ℕ × {𝑋}))
1816, 17eqtr4di 2244 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = 𝑆)
1918, 10fveq12d 5562 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (𝑆𝑁))
2010negeqd 8216 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → -𝑛 = -𝑁)
2118, 20fveq12d 5562 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘-𝑛) = (𝑆‘-𝑁))
2221fveq2d 5559 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) = (𝐼‘(𝑆‘-𝑁)))
2312, 19, 22ifbieq12d 3584 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) = if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁))))
2411, 23ifbieq2d 3582 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
2524adantl 277 . . 3 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
26 simpll 527 . . 3 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → 𝑁 ∈ ℤ)
27 simplr 528 . . 3 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → 𝑋𝐵)
28 fn0g 12961 . . . . . . 7 0g Fn V
29 funfvex 5572 . . . . . . . 8 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
3029funfni 5355 . . . . . . 7 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
3128, 30mpan 424 . . . . . 6 (𝐺 ∈ V → (0g𝐺) ∈ V)
325, 31eqeltrid 2280 . . . . 5 (𝐺 ∈ V → 0 ∈ V)
3332ad2antlr 489 . . . 4 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ 𝑁 = 0) → 0 ∈ V)
34 nnuz 9631 . . . . . . . . 9 ℕ = (ℤ‘1)
35 1zzd 9347 . . . . . . . . 9 ((𝑋𝐵𝐺 ∈ V) → 1 ∈ ℤ)
36 fvconst2g 5773 . . . . . . . . . . . 12 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋)
37 simpl 109 . . . . . . . . . . . 12 ((𝑋𝐵𝑢 ∈ ℕ) → 𝑋𝐵)
3836, 37eqeltrd 2270 . . . . . . . . . . 11 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵)
3938elexd 2773 . . . . . . . . . 10 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V)
4039adantlr 477 . . . . . . . . 9 (((𝑋𝐵𝐺 ∈ V) ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V)
41 simprl 529 . . . . . . . . . 10 (((𝑋𝐵𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V)
42 plusgslid 12733 . . . . . . . . . . . . 13 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4342slotex 12648 . . . . . . . . . . . 12 (𝐺 ∈ V → (+g𝐺) ∈ V)
444, 43eqeltrid 2280 . . . . . . . . . . 11 (𝐺 ∈ V → + ∈ V)
4544ad2antlr 489 . . . . . . . . . 10 (((𝑋𝐵𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → + ∈ V)
46 simprr 531 . . . . . . . . . 10 (((𝑋𝐵𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
47 ovexg 5953 . . . . . . . . . 10 ((𝑢 ∈ V ∧ + ∈ V ∧ 𝑣 ∈ V) → (𝑢 + 𝑣) ∈ V)
4841, 45, 46, 47syl3anc 1249 . . . . . . . . 9 (((𝑋𝐵𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢 + 𝑣) ∈ V)
4934, 35, 40, 48seqf 10538 . . . . . . . 8 ((𝑋𝐵𝐺 ∈ V) → seq1( + , (ℕ × {𝑋})):ℕ⟶V)
5017feq1i 5397 . . . . . . . 8 (𝑆:ℕ⟶V ↔ seq1( + , (ℕ × {𝑋})):ℕ⟶V)
5149, 50sylibr 134 . . . . . . 7 ((𝑋𝐵𝐺 ∈ V) → 𝑆:ℕ⟶V)
5251ad5ant23 522 . . . . . 6 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑆:ℕ⟶V)
53 simp-4l 541 . . . . . . 7 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑁 ∈ ℤ)
54 simpr 110 . . . . . . 7 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 0 < 𝑁)
55 elnnz 9330 . . . . . . 7 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
5653, 54, 55sylanbrc 417 . . . . . 6 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
5752, 56ffvelcdmd 5695 . . . . 5 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → (𝑆𝑁) ∈ V)
581, 6grpinvfng 13119 . . . . . . . 8 (𝐺 ∈ V → 𝐼 Fn 𝐵)
59 basfn 12679 . . . . . . . . . 10 Base Fn V
60 funfvex 5572 . . . . . . . . . . 11 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
6160funfni 5355 . . . . . . . . . 10 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
6259, 61mpan 424 . . . . . . . . 9 (𝐺 ∈ V → (Base‘𝐺) ∈ V)
631, 62eqeltrid 2280 . . . . . . . 8 (𝐺 ∈ V → 𝐵 ∈ V)
64 fnex 5781 . . . . . . . 8 ((𝐼 Fn 𝐵𝐵 ∈ V) → 𝐼 ∈ V)
6558, 63, 64syl2anc 411 . . . . . . 7 (𝐺 ∈ V → 𝐼 ∈ V)
6665ad3antlr 493 . . . . . 6 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝐼 ∈ V)
6751ad5ant23 522 . . . . . . 7 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑆:ℕ⟶V)
68 znegcl 9351 . . . . . . . . 9 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
6968ad4antr 494 . . . . . . . 8 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℤ)
70 simplr 528 . . . . . . . . . 10 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 𝑁 = 0)
71 simpr 110 . . . . . . . . . 10 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 < 𝑁)
72 ztri3or0 9362 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
7372ad4antr 494 . . . . . . . . . 10 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
7470, 71, 73ecase23d 1361 . . . . . . . . 9 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 < 0)
75 zre 9324 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
7675ad4antr 494 . . . . . . . . . 10 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℝ)
7776lt0neg1d 8536 . . . . . . . . 9 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁))
7874, 77mpbid 147 . . . . . . . 8 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 < -𝑁)
79 elnnz 9330 . . . . . . . 8 (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 < -𝑁))
8069, 78, 79sylanbrc 417 . . . . . . 7 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℕ)
8167, 80ffvelcdmd 5695 . . . . . 6 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑆‘-𝑁) ∈ V)
82 fvexg 5574 . . . . . 6 ((𝐼 ∈ V ∧ (𝑆‘-𝑁) ∈ V) → (𝐼‘(𝑆‘-𝑁)) ∈ V)
8366, 81, 82syl2anc 411 . . . . 5 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝐼‘(𝑆‘-𝑁)) ∈ V)
84 0zd 9332 . . . . . 6 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → 0 ∈ ℤ)
85 simplll 533 . . . . . 6 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
86 zdclt 9397 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 0 < 𝑁)
8784, 85, 86syl2anc 411 . . . . 5 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → DECID 0 < 𝑁)
8857, 83, 87ifcldadc 3587 . . . 4 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁))) ∈ V)
89 0zd 9332 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → 0 ∈ ℤ)
90 zdceq 9395 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
9126, 89, 90syl2anc 411 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → DECID 𝑁 = 0)
9233, 88, 91ifcldadc 3587 . . 3 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))) ∈ V)
939, 25, 26, 27, 92ovmpod 6047 . 2 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
943, 93mpdan 421 1 ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835  w3o 979   = wceq 1364  wcel 2164  Vcvv 2760  ifcif 3558  {csn 3619   class class class wbr 4030   × cxp 4658   Fn wfn 5250  wf 5251  cfv 5255  (class class class)co 5919  cmpo 5921  cr 7873  0cc0 7874  1c1 7875   < clt 8056  -cneg 8193  cn 8984  cz 9320  seqcseq 10521  Basecbs 12621  +gcplusg 12698  0gc0g 12870  invgcminusg 13076  .gcmg 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-minusg 13079  df-mulg 13193
This theorem is referenced by:  mulg0  13198  mulgnn  13199  mulgnegnn  13205  subgmulg  13261
  Copyright terms: Public domain W3C validator