| Step | Hyp | Ref
| Expression |
| 1 | | mulgval.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
| 2 | 1 | basmex 12762 |
. . 3
⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
| 3 | 2 | adantl 277 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ V) |
| 4 | | mulgval.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
| 5 | | mulgval.o |
. . . . 5
⊢ 0 =
(0g‘𝐺) |
| 6 | | mulgval.i |
. . . . 5
⊢ 𝐼 = (invg‘𝐺) |
| 7 | | mulgval.t |
. . . . 5
⊢ · =
(.g‘𝐺) |
| 8 | 1, 4, 5, 6, 7 | mulgfvalg 13327 |
. . . 4
⊢ (𝐺 ∈ V → · =
(𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))) |
| 9 | 8 | adantl 277 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) → · = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))) |
| 10 | | simpl 109 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑛 = 𝑁) |
| 11 | 10 | eqeq1d 2205 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑛 = 0 ↔ 𝑁 = 0)) |
| 12 | 10 | breq2d 4046 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (0 < 𝑛 ↔ 0 < 𝑁)) |
| 13 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) |
| 14 | 13 | sneqd 3636 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → {𝑥} = {𝑋}) |
| 15 | 14 | xpeq2d 4688 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (ℕ × {𝑥}) = (ℕ × {𝑋})) |
| 16 | 15 | seqeq3d 10564 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑋}))) |
| 17 | | mulgval.s |
. . . . . . . 8
⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) |
| 18 | 16, 17 | eqtr4di 2247 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = 𝑆) |
| 19 | 18, 10 | fveq12d 5568 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (𝑆‘𝑁)) |
| 20 | 10 | negeqd 8238 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → -𝑛 = -𝑁) |
| 21 | 18, 20 | fveq12d 5568 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘-𝑛) = (𝑆‘-𝑁)) |
| 22 | 21 | fveq2d 5565 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) = (𝐼‘(𝑆‘-𝑁))) |
| 23 | 12, 19, 22 | ifbieq12d 3588 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) = if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁)))) |
| 24 | 11, 23 | ifbieq2d 3586 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
| 25 | 24 | adantl 277 |
. . 3
⊢ ((((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) ∧ (𝑛 = 𝑁 ∧ 𝑥 = 𝑋)) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
| 26 | | simpll 527 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) → 𝑁 ∈ ℤ) |
| 27 | | simplr 528 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) → 𝑋 ∈ 𝐵) |
| 28 | | fn0g 13077 |
. . . . . . 7
⊢
0g Fn V |
| 29 | | funfvex 5578 |
. . . . . . . 8
⊢ ((Fun
0g ∧ 𝐺
∈ dom 0g) → (0g‘𝐺) ∈ V) |
| 30 | 29 | funfni 5361 |
. . . . . . 7
⊢
((0g Fn V ∧ 𝐺 ∈ V) → (0g‘𝐺) ∈ V) |
| 31 | 28, 30 | mpan 424 |
. . . . . 6
⊢ (𝐺 ∈ V →
(0g‘𝐺)
∈ V) |
| 32 | 5, 31 | eqeltrid 2283 |
. . . . 5
⊢ (𝐺 ∈ V → 0 ∈
V) |
| 33 | 32 | ad2antlr 489 |
. . . 4
⊢ ((((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) ∧ 𝑁 = 0) → 0 ∈ V) |
| 34 | | nnuz 9654 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 35 | | 1zzd 9370 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐺 ∈ V) → 1 ∈
ℤ) |
| 36 | | fvconst2g 5779 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑢) = 𝑋) |
| 37 | | simpl 109 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → 𝑋 ∈ 𝐵) |
| 38 | 36, 37 | eqeltrd 2273 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑢) ∈ 𝐵) |
| 39 | 38 | elexd 2776 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑢) ∈ V) |
| 40 | 39 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝐵 ∧ 𝐺 ∈ V) ∧ 𝑢 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑢) ∈ V) |
| 41 | | simprl 529 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐵 ∧ 𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V) |
| 42 | | plusgslid 12815 |
. . . . . . . . . . . . 13
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
| 43 | 42 | slotex 12730 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ V →
(+g‘𝐺)
∈ V) |
| 44 | 4, 43 | eqeltrid 2283 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ V → + ∈
V) |
| 45 | 44 | ad2antlr 489 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐵 ∧ 𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → + ∈ V) |
| 46 | | simprr 531 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐵 ∧ 𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V) |
| 47 | | ovexg 5959 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ V ∧ + ∈ V
∧ 𝑣 ∈ V) →
(𝑢 + 𝑣) ∈ V) |
| 48 | 41, 45, 46, 47 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝐵 ∧ 𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢 + 𝑣) ∈ V) |
| 49 | 34, 35, 40, 48 | seqf 10573 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐺 ∈ V) → seq1( + , (ℕ × {𝑋})):ℕ⟶V) |
| 50 | 17 | feq1i 5403 |
. . . . . . . 8
⊢ (𝑆:ℕ⟶V ↔ seq1(
+ ,
(ℕ × {𝑋})):ℕ⟶V) |
| 51 | 49, 50 | sylibr 134 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐺 ∈ V) → 𝑆:ℕ⟶V) |
| 52 | 51 | ad5ant23 522 |
. . . . . 6
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑆:ℕ⟶V) |
| 53 | | simp-4l 541 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑁 ∈ ℤ) |
| 54 | | simpr 110 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 0 < 𝑁) |
| 55 | | elnnz 9353 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 <
𝑁)) |
| 56 | 53, 54, 55 | sylanbrc 417 |
. . . . . 6
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
| 57 | 52, 56 | ffvelcdmd 5701 |
. . . . 5
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → (𝑆‘𝑁) ∈ V) |
| 58 | 1, 6 | grpinvfng 13246 |
. . . . . . . 8
⊢ (𝐺 ∈ V → 𝐼 Fn 𝐵) |
| 59 | | basfn 12761 |
. . . . . . . . . 10
⊢ Base Fn
V |
| 60 | | funfvex 5578 |
. . . . . . . . . . 11
⊢ ((Fun
Base ∧ 𝐺 ∈ dom
Base) → (Base‘𝐺)
∈ V) |
| 61 | 60 | funfni 5361 |
. . . . . . . . . 10
⊢ ((Base Fn
V ∧ 𝐺 ∈ V) →
(Base‘𝐺) ∈
V) |
| 62 | 59, 61 | mpan 424 |
. . . . . . . . 9
⊢ (𝐺 ∈ V →
(Base‘𝐺) ∈
V) |
| 63 | 1, 62 | eqeltrid 2283 |
. . . . . . . 8
⊢ (𝐺 ∈ V → 𝐵 ∈ V) |
| 64 | | fnex 5787 |
. . . . . . . 8
⊢ ((𝐼 Fn 𝐵 ∧ 𝐵 ∈ V) → 𝐼 ∈ V) |
| 65 | 58, 63, 64 | syl2anc 411 |
. . . . . . 7
⊢ (𝐺 ∈ V → 𝐼 ∈ V) |
| 66 | 65 | ad3antlr 493 |
. . . . . 6
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝐼 ∈ V) |
| 67 | 51 | ad5ant23 522 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑆:ℕ⟶V) |
| 68 | | znegcl 9374 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → -𝑁 ∈
ℤ) |
| 69 | 68 | ad4antr 494 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℤ) |
| 70 | | simplr 528 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 𝑁 = 0) |
| 71 | | simpr 110 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 < 𝑁) |
| 72 | | ztri3or0 9385 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
| 73 | 72 | ad4antr 494 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
| 74 | 70, 71, 73 | ecase23d 1361 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 < 0) |
| 75 | | zre 9347 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 76 | 75 | ad4antr 494 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℝ) |
| 77 | 76 | lt0neg1d 8559 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁)) |
| 78 | 74, 77 | mpbid 147 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 < -𝑁) |
| 79 | | elnnz 9353 |
. . . . . . . 8
⊢ (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 <
-𝑁)) |
| 80 | 69, 78, 79 | sylanbrc 417 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℕ) |
| 81 | 67, 80 | ffvelcdmd 5701 |
. . . . . 6
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑆‘-𝑁) ∈ V) |
| 82 | | fvexg 5580 |
. . . . . 6
⊢ ((𝐼 ∈ V ∧ (𝑆‘-𝑁) ∈ V) → (𝐼‘(𝑆‘-𝑁)) ∈ V) |
| 83 | 66, 81, 82 | syl2anc 411 |
. . . . 5
⊢
(((((𝑁 ∈
ℤ ∧ 𝑋 ∈
𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝐼‘(𝑆‘-𝑁)) ∈ V) |
| 84 | | 0zd 9355 |
. . . . . 6
⊢ ((((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → 0 ∈
ℤ) |
| 85 | | simplll 533 |
. . . . . 6
⊢ ((((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ) |
| 86 | | zdclt 9420 |
. . . . . 6
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → DECID 0 < 𝑁) |
| 87 | 84, 85, 86 | syl2anc 411 |
. . . . 5
⊢ ((((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → DECID 0 <
𝑁) |
| 88 | 57, 83, 87 | ifcldadc 3591 |
. . . 4
⊢ ((((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))) ∈ V) |
| 89 | | 0zd 9355 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) → 0 ∈
ℤ) |
| 90 | | zdceq 9418 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
| 91 | 26, 89, 90 | syl2anc 411 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) → DECID 𝑁 = 0) |
| 92 | 33, 88, 91 | ifcldadc 3591 |
. . 3
⊢ (((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) → if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁)))) ∈ V) |
| 93 | 9, 25, 26, 27, 92 | ovmpod 6054 |
. 2
⊢ (((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ 𝐺 ∈ V) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
| 94 | 3, 93 | mpdan 421 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |