ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgval GIF version

Theorem mulgval 13667
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b 𝐵 = (Base‘𝐺)
mulgval.p + = (+g𝐺)
mulgval.o 0 = (0g𝐺)
mulgval.i 𝐼 = (invg𝐺)
mulgval.t · = (.g𝐺)
mulgval.s 𝑆 = seq1( + , (ℕ × {𝑋}))
Assertion
Ref Expression
mulgval ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))

Proof of Theorem mulgval
Dummy variables 𝑥 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.b . . . 4 𝐵 = (Base‘𝐺)
21basmex 13100 . . 3 (𝑋𝐵𝐺 ∈ V)
32adantl 277 . 2 ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝐺 ∈ V)
4 mulgval.p . . . . 5 + = (+g𝐺)
5 mulgval.o . . . . 5 0 = (0g𝐺)
6 mulgval.i . . . . 5 𝐼 = (invg𝐺)
7 mulgval.t . . . . 5 · = (.g𝐺)
81, 4, 5, 6, 7mulgfvalg 13666 . . . 4 (𝐺 ∈ V → · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
98adantl 277 . . 3 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
10 simpl 109 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑛 = 𝑁)
1110eqeq1d 2238 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑛 = 0 ↔ 𝑁 = 0))
1210breq2d 4095 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → (0 < 𝑛 ↔ 0 < 𝑁))
13 simpr 110 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑥 = 𝑋)
1413sneqd 3679 . . . . . . . . . 10 ((𝑛 = 𝑁𝑥 = 𝑋) → {𝑥} = {𝑋})
1514xpeq2d 4743 . . . . . . . . 9 ((𝑛 = 𝑁𝑥 = 𝑋) → (ℕ × {𝑥}) = (ℕ × {𝑋}))
1615seqeq3d 10685 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑋})))
17 mulgval.s . . . . . . . 8 𝑆 = seq1( + , (ℕ × {𝑋}))
1816, 17eqtr4di 2280 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = 𝑆)
1918, 10fveq12d 5636 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (𝑆𝑁))
2010negeqd 8349 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → -𝑛 = -𝑁)
2118, 20fveq12d 5636 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘-𝑛) = (𝑆‘-𝑁))
2221fveq2d 5633 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) = (𝐼‘(𝑆‘-𝑁)))
2312, 19, 22ifbieq12d 3629 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) = if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁))))
2411, 23ifbieq2d 3627 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
2524adantl 277 . . 3 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
26 simpll 527 . . 3 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → 𝑁 ∈ ℤ)
27 simplr 528 . . 3 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → 𝑋𝐵)
28 fn0g 13416 . . . . . . 7 0g Fn V
29 funfvex 5646 . . . . . . . 8 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
3029funfni 5423 . . . . . . 7 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
3128, 30mpan 424 . . . . . 6 (𝐺 ∈ V → (0g𝐺) ∈ V)
325, 31eqeltrid 2316 . . . . 5 (𝐺 ∈ V → 0 ∈ V)
3332ad2antlr 489 . . . 4 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ 𝑁 = 0) → 0 ∈ V)
34 nnuz 9766 . . . . . . . . 9 ℕ = (ℤ‘1)
35 1zzd 9481 . . . . . . . . 9 ((𝑋𝐵𝐺 ∈ V) → 1 ∈ ℤ)
36 fvconst2g 5857 . . . . . . . . . . . 12 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋)
37 simpl 109 . . . . . . . . . . . 12 ((𝑋𝐵𝑢 ∈ ℕ) → 𝑋𝐵)
3836, 37eqeltrd 2306 . . . . . . . . . . 11 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵)
3938elexd 2813 . . . . . . . . . 10 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V)
4039adantlr 477 . . . . . . . . 9 (((𝑋𝐵𝐺 ∈ V) ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V)
41 simprl 529 . . . . . . . . . 10 (((𝑋𝐵𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V)
42 plusgslid 13153 . . . . . . . . . . . . 13 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4342slotex 13067 . . . . . . . . . . . 12 (𝐺 ∈ V → (+g𝐺) ∈ V)
444, 43eqeltrid 2316 . . . . . . . . . . 11 (𝐺 ∈ V → + ∈ V)
4544ad2antlr 489 . . . . . . . . . 10 (((𝑋𝐵𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → + ∈ V)
46 simprr 531 . . . . . . . . . 10 (((𝑋𝐵𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
47 ovexg 6041 . . . . . . . . . 10 ((𝑢 ∈ V ∧ + ∈ V ∧ 𝑣 ∈ V) → (𝑢 + 𝑣) ∈ V)
4841, 45, 46, 47syl3anc 1271 . . . . . . . . 9 (((𝑋𝐵𝐺 ∈ V) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢 + 𝑣) ∈ V)
4934, 35, 40, 48seqf 10694 . . . . . . . 8 ((𝑋𝐵𝐺 ∈ V) → seq1( + , (ℕ × {𝑋})):ℕ⟶V)
5017feq1i 5466 . . . . . . . 8 (𝑆:ℕ⟶V ↔ seq1( + , (ℕ × {𝑋})):ℕ⟶V)
5149, 50sylibr 134 . . . . . . 7 ((𝑋𝐵𝐺 ∈ V) → 𝑆:ℕ⟶V)
5251ad5ant23 522 . . . . . 6 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑆:ℕ⟶V)
53 simp-4l 541 . . . . . . 7 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑁 ∈ ℤ)
54 simpr 110 . . . . . . 7 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 0 < 𝑁)
55 elnnz 9464 . . . . . . 7 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
5653, 54, 55sylanbrc 417 . . . . . 6 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
5752, 56ffvelcdmd 5773 . . . . 5 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ 0 < 𝑁) → (𝑆𝑁) ∈ V)
581, 6grpinvfng 13585 . . . . . . . 8 (𝐺 ∈ V → 𝐼 Fn 𝐵)
59 basfn 13099 . . . . . . . . . 10 Base Fn V
60 funfvex 5646 . . . . . . . . . . 11 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
6160funfni 5423 . . . . . . . . . 10 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
6259, 61mpan 424 . . . . . . . . 9 (𝐺 ∈ V → (Base‘𝐺) ∈ V)
631, 62eqeltrid 2316 . . . . . . . 8 (𝐺 ∈ V → 𝐵 ∈ V)
64 fnex 5865 . . . . . . . 8 ((𝐼 Fn 𝐵𝐵 ∈ V) → 𝐼 ∈ V)
6558, 63, 64syl2anc 411 . . . . . . 7 (𝐺 ∈ V → 𝐼 ∈ V)
6665ad3antlr 493 . . . . . 6 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝐼 ∈ V)
6751ad5ant23 522 . . . . . . 7 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑆:ℕ⟶V)
68 znegcl 9485 . . . . . . . . 9 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
6968ad4antr 494 . . . . . . . 8 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℤ)
70 simplr 528 . . . . . . . . . 10 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 𝑁 = 0)
71 simpr 110 . . . . . . . . . 10 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 < 𝑁)
72 ztri3or0 9496 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
7372ad4antr 494 . . . . . . . . . 10 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
7470, 71, 73ecase23d 1384 . . . . . . . . 9 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 < 0)
75 zre 9458 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
7675ad4antr 494 . . . . . . . . . 10 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℝ)
7776lt0neg1d 8670 . . . . . . . . 9 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁))
7874, 77mpbid 147 . . . . . . . 8 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 < -𝑁)
79 elnnz 9464 . . . . . . . 8 (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 < -𝑁))
8069, 78, 79sylanbrc 417 . . . . . . 7 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℕ)
8167, 80ffvelcdmd 5773 . . . . . 6 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑆‘-𝑁) ∈ V)
82 fvexg 5648 . . . . . 6 ((𝐼 ∈ V ∧ (𝑆‘-𝑁) ∈ V) → (𝐼‘(𝑆‘-𝑁)) ∈ V)
8366, 81, 82syl2anc 411 . . . . 5 (((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝐼‘(𝑆‘-𝑁)) ∈ V)
84 0zd 9466 . . . . . 6 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → 0 ∈ ℤ)
85 simplll 533 . . . . . 6 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
86 zdclt 9532 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 0 < 𝑁)
8784, 85, 86syl2anc 411 . . . . 5 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → DECID 0 < 𝑁)
8857, 83, 87ifcldadc 3632 . . . 4 ((((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁))) ∈ V)
89 0zd 9466 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → 0 ∈ ℤ)
90 zdceq 9530 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
9126, 89, 90syl2anc 411 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → DECID 𝑁 = 0)
9233, 88, 91ifcldadc 3632 . . 3 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))) ∈ V)
939, 25, 26, 27, 92ovmpod 6138 . 2 (((𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝐺 ∈ V) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
943, 93mpdan 421 1 ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 839  w3o 1001   = wceq 1395  wcel 2200  Vcvv 2799  ifcif 3602  {csn 3666   class class class wbr 4083   × cxp 4717   Fn wfn 5313  wf 5314  cfv 5318  (class class class)co 6007  cmpo 6009  cr 8006  0cc0 8007  1c1 8008   < clt 8189  -cneg 8326  cn 9118  cz 9454  seqcseq 10677  Basecbs 13040  +gcplusg 13118  0gc0g 13297  invgcminusg 13542  .gcmg 13664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-seqfrec 10678  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-0g 13299  df-minusg 13545  df-mulg 13665
This theorem is referenced by:  mulg0  13670  mulgnn  13671  mulgnegnn  13677  subgmulg  13733
  Copyright terms: Public domain W3C validator