ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxifle GIF version

Theorem xrmaxifle 11601
Description: An upper bound for {𝐴, 𝐵} in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.)
Assertion
Ref Expression
xrmaxifle ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))

Proof of Theorem xrmaxifle
StepHypRef Expression
1 pnfge 9918 . . . 4 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
21ad2antrr 488 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
3 simpr 110 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → 𝐵 = +∞)
43iftrued 3579 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = +∞)
52, 4breqtrrd 4075 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
6 xrleid 9929 . . . . . 6 (𝐴 ∈ ℝ*𝐴𝐴)
76ad3antrrr 492 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴𝐴)
8 simpr 110 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐵 = -∞)
98iftrued 3579 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = 𝐴)
107, 9breqtrrd 4075 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴 ≤ if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
111ad4antr 494 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 ≤ +∞)
12 simpr 110 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 = +∞)
1312iftrued 3579 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) = +∞)
1411, 13breqtrrd 4075 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
15 mnfle 9921 . . . . . . . . . 10 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
1615ad5antlr 497 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → -∞ ≤ 𝐵)
17 simpr 110 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → 𝐴 = -∞)
1817iftrued 3579 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) = 𝐵)
1916, 17, 183brtr4d 4079 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → 𝐴 ≤ if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
20 simplr 528 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 = +∞)
21 simpr 110 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 = -∞)
22 elxr 9905 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2322biimpi 120 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2423ad5antr 496 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2520, 21, 24ecase23d 1363 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ)
26 simpr 110 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → ¬ 𝐵 = +∞)
2726ad3antrrr 492 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐵 = +∞)
28 simpr 110 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐵 = -∞)
2928ad2antrr 488 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐵 = -∞)
30 elxr 9905 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3130biimpi 120 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3231ad5antlr 497 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3327, 29, 32ecase23d 1363 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐵 ∈ ℝ)
34 maxle1 11566 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
3525, 33, 34syl2anc 411 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
3621iffalsed 3582 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) = sup({𝐴, 𝐵}, ℝ, < ))
3735, 36breqtrrd 4075 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≤ if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
38 xrmnfdc 9972 . . . . . . . . . 10 (𝐴 ∈ ℝ*DECID 𝐴 = -∞)
39 exmiddc 838 . . . . . . . . . 10 (DECID 𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
4038, 39syl 14 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
4140ad4antr 494 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
4219, 37, 41mpjaodan 800 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≤ if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
43 simpr 110 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → ¬ 𝐴 = +∞)
4443iffalsed 3582 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) = if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
4542, 44breqtrrd 4075 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
46 xrpnfdc 9971 . . . . . . . 8 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
47 exmiddc 838 . . . . . . . 8 (DECID 𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
4846, 47syl 14 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
4948ad3antrrr 492 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
5014, 45, 49mpjaodan 800 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
5128iffalsed 3582 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
5250, 51breqtrrd 4075 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ≤ if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
53 xrmnfdc 9972 . . . . . 6 (𝐵 ∈ ℝ*DECID 𝐵 = -∞)
54 exmiddc 838 . . . . . 6 (DECID 𝐵 = -∞ → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
5553, 54syl 14 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
5655ad2antlr 489 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
5710, 52, 56mpjaodan 800 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → 𝐴 ≤ if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
5826iffalsed 3582 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
5957, 58breqtrrd 4075 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
60 xrpnfdc 9971 . . . 4 (𝐵 ∈ ℝ*DECID 𝐵 = +∞)
61 exmiddc 838 . . . 4 (DECID 𝐵 = +∞ → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞))
6260, 61syl 14 . . 3 (𝐵 ∈ ℝ* → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞))
6362adantl 277 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞))
645, 59, 63mpjaodan 800 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836  w3o 980   = wceq 1373  wcel 2177  ifcif 3572  {cpr 3635   class class class wbr 4047  supcsup 7091  cr 7931  +∞cpnf 8111  -∞cmnf 8112  *cxr 8113   < clt 8114  cle 8115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-rp 9783  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354
This theorem is referenced by:  xrmaxiflemval  11605  xrmax1sup  11608
  Copyright terms: Public domain W3C validator