ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxifle GIF version

Theorem xrmaxifle 11047
Description: An upper bound for {𝐴, 𝐵} in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.)
Assertion
Ref Expression
xrmaxifle ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))

Proof of Theorem xrmaxifle
StepHypRef Expression
1 pnfge 9605 . . . 4 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
21ad2antrr 480 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
3 simpr 109 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → 𝐵 = +∞)
43iftrued 3486 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = +∞)
52, 4breqtrrd 3964 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
6 xrleid 9616 . . . . . 6 (𝐴 ∈ ℝ*𝐴𝐴)
76ad3antrrr 484 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴𝐴)
8 simpr 109 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐵 = -∞)
98iftrued 3486 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = 𝐴)
107, 9breqtrrd 3964 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴 ≤ if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
111ad4antr 486 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 ≤ +∞)
12 simpr 109 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 = +∞)
1312iftrued 3486 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) = +∞)
1411, 13breqtrrd 3964 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
15 mnfle 9608 . . . . . . . . . 10 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
1615ad5antlr 489 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → -∞ ≤ 𝐵)
17 simpr 109 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → 𝐴 = -∞)
1817iftrued 3486 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) = 𝐵)
1916, 17, 183brtr4d 3968 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → 𝐴 ≤ if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
20 simplr 520 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 = +∞)
21 simpr 109 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 = -∞)
22 elxr 9593 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2322biimpi 119 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2423ad5antr 488 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2520, 21, 24ecase23d 1329 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ)
26 simpr 109 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → ¬ 𝐵 = +∞)
2726ad3antrrr 484 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐵 = +∞)
28 simpr 109 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐵 = -∞)
2928ad2antrr 480 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐵 = -∞)
30 elxr 9593 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3130biimpi 119 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3231ad5antlr 489 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3327, 29, 32ecase23d 1329 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐵 ∈ ℝ)
34 maxle1 11015 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
3525, 33, 34syl2anc 409 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
3621iffalsed 3489 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) = sup({𝐴, 𝐵}, ℝ, < ))
3735, 36breqtrrd 3964 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≤ if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
38 xrmnfdc 9656 . . . . . . . . . 10 (𝐴 ∈ ℝ*DECID 𝐴 = -∞)
39 exmiddc 822 . . . . . . . . . 10 (DECID 𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
4038, 39syl 14 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
4140ad4antr 486 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
4219, 37, 41mpjaodan 788 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≤ if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
43 simpr 109 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → ¬ 𝐴 = +∞)
4443iffalsed 3489 . . . . . . 7 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) = if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))
4542, 44breqtrrd 3964 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
46 xrpnfdc 9655 . . . . . . . 8 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
47 exmiddc 822 . . . . . . . 8 (DECID 𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
4846, 47syl 14 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
4948ad3antrrr 484 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞))
5014, 45, 49mpjaodan 788 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ≤ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
5128iffalsed 3489 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))
5250, 51breqtrrd 3964 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ≤ if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
53 xrmnfdc 9656 . . . . . 6 (𝐵 ∈ ℝ*DECID 𝐵 = -∞)
54 exmiddc 822 . . . . . 6 (DECID 𝐵 = -∞ → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
5553, 54syl 14 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
5655ad2antlr 481 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞))
5710, 52, 56mpjaodan 788 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → 𝐴 ≤ if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
5826iffalsed 3489 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))
5957, 58breqtrrd 3964 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
60 xrpnfdc 9655 . . . 4 (𝐵 ∈ ℝ*DECID 𝐵 = +∞)
61 exmiddc 822 . . . 4 (DECID 𝐵 = +∞ → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞))
6260, 61syl 14 . . 3 (𝐵 ∈ ℝ* → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞))
6362adantl 275 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞))
645, 59, 63mpjaodan 788 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 820  w3o 962   = wceq 1332  wcel 1481  ifcif 3479  {cpr 3533   class class class wbr 3937  supcsup 6877  cr 7643  +∞cpnf 7821  -∞cmnf 7822  *cxr 7823   < clt 7824  cle 7825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  xrmaxiflemval  11051  xrmax1sup  11054
  Copyright terms: Public domain W3C validator