ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxiflemcl GIF version

Theorem xrmaxiflemcl 11388
Description: Lemma for xrmaxif 11394. Closure. (Contributed by Jim Kingdon, 29-Apr-2023.)
Assertion
Ref Expression
xrmaxiflemcl ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*)

Proof of Theorem xrmaxiflemcl
StepHypRef Expression
1 pnfxr 8072 . . 3 +∞ ∈ ℝ*
21a1i 9 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → +∞ ∈ ℝ*)
3 simpl 109 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
43ad2antrr 488 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
51a1i 9 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → +∞ ∈ ℝ*)
6 simpr 110 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
76ad4antr 494 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → 𝐵 ∈ ℝ*)
8 simplr 528 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 = +∞)
9 simpr 110 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 = -∞)
10 elxr 9842 . . . . . . . . . 10 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
113, 10sylib 122 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1211ad4antr 494 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
138, 9, 12ecase23d 1361 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ)
14 simp-4r 542 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐵 = +∞)
15 simpllr 534 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → ¬ 𝐵 = -∞)
16 elxr 9842 . . . . . . . . . 10 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
176, 16sylib 122 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
1817ad4antr 494 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
1914, 15, 18ecase23d 1361 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → 𝐵 ∈ ℝ)
20 maxcl 11354 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2113, 19, 20syl2anc 411 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
2221rexrd 8069 . . . . 5 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ*)
23 xrmnfdc 9909 . . . . . 6 (𝐴 ∈ ℝ*DECID 𝐴 = -∞)
2423ad4antr 494 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → DECID 𝐴 = -∞)
257, 22, 24ifcldadc 3586 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) ∈ ℝ*)
26 xrpnfdc 9908 . . . . . 6 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
273, 26syl 14 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → DECID 𝐴 = +∞)
2827ad2antrr 488 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → DECID 𝐴 = +∞)
295, 25, 28ifcldadc 3586 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) ∈ ℝ*)
30 xrmnfdc 9909 . . . 4 (𝐵 ∈ ℝ*DECID 𝐵 = -∞)
3130ad2antlr 489 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → DECID 𝐵 = -∞)
324, 29, 31ifcldadc 3586 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐵 = +∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) ∈ ℝ*)
33 xrpnfdc 9908 . . 3 (𝐵 ∈ ℝ*DECID 𝐵 = +∞)
346, 33syl 14 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → DECID 𝐵 = +∞)
352, 32, 34ifcldadc 3586 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835  w3o 979   = wceq 1364  wcel 2164  ifcif 3557  {cpr 3619  supcsup 7041  cr 7871  +∞cpnf 8051  -∞cmnf 8052  *cxr 8053   < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  xrmaxiflemlub  11391  xrmaxiflemval  11393  xrmaxcl  11395
  Copyright terms: Public domain W3C validator