Proof of Theorem xrmaxiflemab
Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐵 = +∞) |
2 | 1 | iftrued 3533 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) =
+∞) |
3 | 2, 1 | eqtr4d 2206 |
. 2
⊢ ((𝜑 ∧ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵) |
4 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐵 = +∞) → ¬ 𝐵 = +∞) |
5 | 4 | iffalsed 3536 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) |
6 | | xrmaxiflemab.ab |
. . . . . . 7
⊢ (𝜑 → 𝐴 < 𝐵) |
7 | 6 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴 < 𝐵) |
8 | | simpr 109 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐵 = -∞) |
9 | 7, 8 | breqtrd 4015 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴 < -∞) |
10 | | xrmaxiflemab.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
11 | | nltmnf 9745 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ ¬ 𝐴 <
-∞) |
12 | 10, 11 | syl 14 |
. . . . . 6
⊢ (𝜑 → ¬ 𝐴 < -∞) |
13 | 12 | ad2antrr 485 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞) |
14 | 9, 13 | pm2.21dd 615 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = 𝐵) |
15 | | simpr 109 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐵 = -∞) |
16 | 15 | iffalsed 3536 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) |
17 | | simpr 109 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 = +∞) |
18 | 6 | ad3antrrr 489 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 < 𝐵) |
19 | 17, 18 | eqbrtrrd 4013 |
. . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → +∞ < 𝐵) |
20 | | xrmaxiflemab.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
21 | | pnfnlt 9744 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ*
→ ¬ +∞ < 𝐵) |
22 | 20, 21 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → ¬ +∞ < 𝐵) |
23 | 22 | ad3antrrr 489 |
. . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → ¬ +∞ <
𝐵) |
24 | 19, 23 | pm2.21dd 615 |
. . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ 𝐴 = +∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) = 𝐵) |
25 | | simpr 109 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → ¬ 𝐴 = +∞) |
26 | 25 | iffalsed 3536 |
. . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) = if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) |
27 | | simpr 109 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ 𝐴 = -∞) → 𝐴 = -∞) |
28 | 27 | iftrued 3533 |
. . . . . . . 8
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ 𝐴 = -∞) → if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) = 𝐵) |
29 | | simpr 109 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) → ¬
𝐴 =
-∞) |
30 | 29 | iffalsed 3536 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) →
if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) = sup({𝐴, 𝐵}, ℝ, < )) |
31 | 25 | adantr 274 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) → ¬
𝐴 =
+∞) |
32 | | elxr 9733 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) |
33 | 10, 32 | sylib 121 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
34 | 33 | ad4antr 491 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
35 | 31, 29, 34 | ecase23d 1345 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) → 𝐴 ∈
ℝ) |
36 | 4 | ad3antrrr 489 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) → ¬
𝐵 =
+∞) |
37 | 15 | ad2antrr 485 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) → ¬
𝐵 =
-∞) |
38 | | elxr 9733 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) |
39 | 20, 38 | sylib 121 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) |
40 | 39 | ad4antr 491 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) |
41 | 36, 37, 40 | ecase23d 1345 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) → 𝐵 ∈
ℝ) |
42 | 35, 41 | jca 304 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) → (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) |
43 | 6 | ad4antr 491 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) → 𝐴 < 𝐵) |
44 | 35, 41, 43 | ltled 8038 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) → 𝐴 ≤ 𝐵) |
45 | | maxleim 11169 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
46 | 42, 44, 45 | sylc 62 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) →
sup({𝐴, 𝐵}, ℝ, < ) = 𝐵) |
47 | 30, 46 | eqtrd 2203 |
. . . . . . . 8
⊢
(((((𝜑 ∧ ¬
𝐵 = +∞) ∧ ¬
𝐵 = -∞) ∧ ¬
𝐴 = +∞) ∧ ¬
𝐴 = -∞) →
if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) = 𝐵) |
48 | | xrmnfdc 9800 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ*
→ DECID 𝐴 = -∞) |
49 | | exmiddc 831 |
. . . . . . . . . 10
⊢
(DECID 𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
50 | 10, 48, 49 | 3syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
51 | 50 | ad3antrrr 489 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
52 | 28, 47, 51 | mpjaodan 793 |
. . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) = 𝐵) |
53 | 26, 52 | eqtrd 2203 |
. . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) ∧ ¬ 𝐴 = +∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) = 𝐵) |
54 | | xrpnfdc 9799 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ DECID 𝐴 = +∞) |
55 | | exmiddc 831 |
. . . . . . . 8
⊢
(DECID 𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
56 | 10, 54, 55 | 3syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
57 | 56 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
58 | 24, 53, 57 | mpjaodan 793 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) = 𝐵) |
59 | 16, 58 | eqtrd 2203 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = 𝐵) |
60 | | xrmnfdc 9800 |
. . . . . 6
⊢ (𝐵 ∈ ℝ*
→ DECID 𝐵 = -∞) |
61 | | exmiddc 831 |
. . . . . 6
⊢
(DECID 𝐵 = -∞ → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞)) |
62 | 20, 60, 61 | 3syl 17 |
. . . . 5
⊢ (𝜑 → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞)) |
63 | 62 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐵 = +∞) → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞)) |
64 | 14, 59, 63 | mpjaodan 793 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐵 = +∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = 𝐵) |
65 | 5, 64 | eqtrd 2203 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵) |
66 | | xrpnfdc 9799 |
. . 3
⊢ (𝐵 ∈ ℝ*
→ DECID 𝐵 = +∞) |
67 | | exmiddc 831 |
. . 3
⊢
(DECID 𝐵 = +∞ → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞)) |
68 | 20, 66, 67 | 3syl 17 |
. 2
⊢ (𝜑 → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞)) |
69 | 3, 65, 68 | mpjaodan 793 |
1
⊢ (𝜑 → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵) |