ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgmulg GIF version

Theorem subgmulg 13394
Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
subgmulgcl.t · = (.g𝐺)
subgmulg.h 𝐻 = (𝐺s 𝑆)
subgmulg.t = (.g𝐻)
Assertion
Ref Expression
subgmulg ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (𝑁 𝑋))

Proof of Theorem subgmulg
StepHypRef Expression
1 subgmulg.h . . . . . 6 𝐻 = (𝐺s 𝑆)
2 eqid 2196 . . . . . 6 (0g𝐺) = (0g𝐺)
31, 2subg0 13386 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
433ad2ant1 1020 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (0g𝐺) = (0g𝐻))
54ifeq1d 3579 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
61a1i 9 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑆))
7 eqid 2196 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
87a1i 9 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐺))
9 id 19 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
10 subgrcl 13385 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
116, 8, 9, 10ressplusgd 12831 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
12113ad2ant1 1020 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (+g𝐺) = (+g𝐻))
1312seqeq2d 10563 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1413adantr 276 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1514fveq1d 5563 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
1615ifeq1d 3579 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))))
17 simprl 529 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ¬ 𝑁 = 0)
18 simprr 531 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ¬ 0 < 𝑁)
19 simp2 1000 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℤ)
20 ztri3or0 9385 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
2119, 20syl 14 . . . . . . . . . . 11 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
2221adantr 276 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
2317, 18, 22ecase23d 1361 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → 𝑁 < 0)
24 simpl1 1002 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑆 ∈ (SubGrp‘𝐺))
2519adantr 276 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑁 ∈ ℤ)
2625znegcld 9467 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℤ)
2719zred 9465 . . . . . . . . . . . . . . 15 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℝ)
2827lt0neg1d 8559 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ↔ 0 < -𝑁))
2928biimpa 296 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 0 < -𝑁)
30 elnnz 9353 . . . . . . . . . . . . 13 (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 < -𝑁))
3126, 29, 30sylanbrc 417 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℕ)
32 eqid 2196 . . . . . . . . . . . . . . . 16 (Base‘𝐺) = (Base‘𝐺)
3332subgss 13380 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
34333ad2ant1 1020 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆 ⊆ (Base‘𝐺))
35 simp3 1001 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝑆)
3634, 35sseldd 3185 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
3736adantr 276 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑋 ∈ (Base‘𝐺))
38 subgmulgcl.t . . . . . . . . . . . . 13 · = (.g𝐺)
39 eqid 2196 . . . . . . . . . . . . 13 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
4032, 7, 38, 39mulgnn 13332 . . . . . . . . . . . 12 ((-𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (-𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))
4131, 37, 40syl2anc 411 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))
4235adantr 276 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑋𝑆)
4338subgmulgcl 13393 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ -𝑁 ∈ ℤ ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
4424, 26, 42, 43syl3anc 1249 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) ∈ 𝑆)
4541, 44eqeltrrd 2274 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆)
46 eqid 2196 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
47 eqid 2196 . . . . . . . . . . 11 (invg𝐻) = (invg𝐻)
481, 46, 47subginv 13387 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
4924, 45, 48syl2anc 411 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
5023, 49syldan 282 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
5113adantr 276 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
5251fveq1d 5563 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))
5352fveq2d 5565 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5450, 53eqtrd 2229 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5554anassrs 400 . . . . . 6 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
56 0z 9354 . . . . . . 7 0 ∈ ℤ
5719adantr 276 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
58 zdclt 9420 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 0 < 𝑁)
5956, 57, 58sylancr 414 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → DECID 0 < 𝑁)
6055, 59ifeq2dadc 3593 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))))
6116, 60eqtrd 2229 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))))
62 0zd 9355 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 0 ∈ ℤ)
63 zdceq 9418 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
6419, 62, 63syl2anc 411 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → DECID 𝑁 = 0)
6561, 64ifeq2dadc 3593 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
665, 65eqtrd 2229 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
6732, 7, 2, 46, 38, 39mulgval 13328 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
6819, 36, 67syl2anc 411 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
691subgbas 13384 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
70693ad2ant1 1020 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆 = (Base‘𝐻))
7135, 70eleqtrd 2275 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
72 eqid 2196 . . . 4 (Base‘𝐻) = (Base‘𝐻)
73 eqid 2196 . . . 4 (+g𝐻) = (+g𝐻)
74 eqid 2196 . . . 4 (0g𝐻) = (0g𝐻)
75 subgmulg.t . . . 4 = (.g𝐻)
76 eqid 2196 . . . 4 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
7772, 73, 74, 47, 75, 76mulgval 13328 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 𝑋) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
7819, 71, 77syl2anc 411 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 𝑋) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
7966, 68, 783eqtr4d 2239 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (𝑁 𝑋))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835  w3o 979  w3a 980   = wceq 1364  wcel 2167  wss 3157  ifcif 3562  {csn 3623   class class class wbr 4034   × cxp 4662  cfv 5259  (class class class)co 5925  0cc0 7896  1c1 7897   < clt 8078  -cneg 8215  cn 9007  cz 9343  seqcseq 10556  Basecbs 12703  s cress 12704  +gcplusg 12780  0gc0g 12958  Grpcgrp 13202  invgcminusg 13203  .gcmg 13325  SubGrpcsubg 13373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-mulg 13326  df-subg 13376
This theorem is referenced by:  zringmulg  14230
  Copyright terms: Public domain W3C validator