Proof of Theorem subgmulg
| Step | Hyp | Ref
 | Expression | 
| 1 |   | subgmulg.h | 
. . . . . 6
⊢ 𝐻 = (𝐺 ↾s 𝑆) | 
| 2 |   | eqid 2196 | 
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 3 | 1, 2 | subg0 13310 | 
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(0g‘𝐺) =
(0g‘𝐻)) | 
| 4 | 3 | 3ad2ant1 1020 | 
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (0g‘𝐺) = (0g‘𝐻)) | 
| 5 | 4 | ifeq1d 3578 | 
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g‘𝐻), if(0 < 𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁))))) | 
| 6 | 1 | a1i 9 | 
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺 ↾s 𝑆)) | 
| 7 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 8 | 7 | a1i 9 | 
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(+g‘𝐺) =
(+g‘𝐺)) | 
| 9 |   | id 19 | 
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | 
| 10 |   | subgrcl 13309 | 
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | 
| 11 | 6, 8, 9, 10 | ressplusgd 12806 | 
. . . . . . . . . 10
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(+g‘𝐺) =
(+g‘𝐻)) | 
| 12 | 11 | 3ad2ant1 1020 | 
. . . . . . . . 9
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (+g‘𝐺) = (+g‘𝐻)) | 
| 13 | 12 | seqeq2d 10546 | 
. . . . . . . 8
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → seq1((+g‘𝐺), (ℕ × {𝑋})) =
seq1((+g‘𝐻), (ℕ × {𝑋}))) | 
| 14 | 13 | adantr 276 | 
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ ¬ 𝑁 = 0) → seq1((+g‘𝐺), (ℕ × {𝑋})) =
seq1((+g‘𝐻), (ℕ × {𝑋}))) | 
| 15 | 14 | fveq1d 5560 | 
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ ¬ 𝑁 = 0) →
(seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) | 
| 16 | 15 | ifeq1d 3578 | 
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)))) | 
| 17 |   | simprl 529 | 
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ¬ 𝑁 = 0) | 
| 18 |   | simprr 531 | 
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ¬ 0 < 𝑁) | 
| 19 |   | simp2 1000 | 
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℤ) | 
| 20 |   | ztri3or0 9368 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) | 
| 21 | 19, 20 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) | 
| 22 | 21 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) | 
| 23 | 17, 18, 22 | ecase23d 1361 | 
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → 𝑁 < 0) | 
| 24 |   | simpl1 1002 | 
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 < 0) → 𝑆 ∈ (SubGrp‘𝐺)) | 
| 25 | 19 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 < 0) → 𝑁 ∈ ℤ) | 
| 26 | 25 | znegcld 9450 | 
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℤ) | 
| 27 | 19 | zred 9448 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℝ) | 
| 28 | 27 | lt0neg1d 8542 | 
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 < 0 ↔ 0 < -𝑁)) | 
| 29 | 28 | biimpa 296 | 
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 < 0) → 0 < -𝑁) | 
| 30 |   | elnnz 9336 | 
. . . . . . . . . . . . 13
⊢ (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 <
-𝑁)) | 
| 31 | 26, 29, 30 | sylanbrc 417 | 
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℕ) | 
| 32 |   | eqid 2196 | 
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 33 | 32 | subgss 13304 | 
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) | 
| 34 | 33 | 3ad2ant1 1020 | 
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) | 
| 35 |   | simp3 1001 | 
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | 
| 36 | 34, 35 | sseldd 3184 | 
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) | 
| 37 | 36 | adantr 276 | 
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 < 0) → 𝑋 ∈ (Base‘𝐺)) | 
| 38 |   | subgmulgcl.t | 
. . . . . . . . . . . . 13
⊢  · =
(.g‘𝐺) | 
| 39 |   | eqid 2196 | 
. . . . . . . . . . . . 13
⊢
seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | 
| 40 | 32, 7, 38, 39 | mulgnn 13256 | 
. . . . . . . . . . . 12
⊢ ((-𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (-𝑁 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)) | 
| 41 | 31, 37, 40 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)) | 
| 42 | 35 | adantr 276 | 
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 < 0) → 𝑋 ∈ 𝑆) | 
| 43 | 38 | subgmulgcl 13317 | 
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ -𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (-𝑁 · 𝑋) ∈ 𝑆) | 
| 44 | 24, 26, 42, 43 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) ∈ 𝑆) | 
| 45 | 41, 44 | eqeltrrd 2274 | 
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 < 0) →
(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆) | 
| 46 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(invg‘𝐺) = (invg‘𝐺) | 
| 47 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(invg‘𝐻) = (invg‘𝐻) | 
| 48 | 1, 46, 47 | subginv 13311 | 
. . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧
(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆) → ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg‘𝐻)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁))) | 
| 49 | 24, 45, 48 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 < 0) →
((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg‘𝐻)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁))) | 
| 50 | 23, 49 | syldan 282 | 
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg‘𝐻)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁))) | 
| 51 | 13 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → seq1((+g‘𝐺), (ℕ × {𝑋})) =
seq1((+g‘𝐻), (ℕ × {𝑋}))) | 
| 52 | 51 | fveq1d 5560 | 
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘-𝑁)) | 
| 53 | 52 | fveq2d 5562 | 
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg‘𝐻)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg‘𝐻)‘(seq1((+g‘𝐻), (ℕ × {𝑋}))‘-𝑁))) | 
| 54 | 50, 53 | eqtrd 2229 | 
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg‘𝐻)‘(seq1((+g‘𝐻), (ℕ × {𝑋}))‘-𝑁))) | 
| 55 | 54 | anassrs 400 | 
. . . . . 6
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg‘𝐻)‘(seq1((+g‘𝐻), (ℕ × {𝑋}))‘-𝑁))) | 
| 56 |   | 0z 9337 | 
. . . . . . 7
⊢ 0 ∈
ℤ | 
| 57 | 19 | adantr 276 | 
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ) | 
| 58 |   | zdclt 9403 | 
. . . . . . 7
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → DECID 0 < 𝑁) | 
| 59 | 56, 57, 58 | sylancr 414 | 
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ ¬ 𝑁 = 0) → DECID 0 <
𝑁) | 
| 60 | 55, 59 | ifeq2dadc 3592 | 
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐻)‘(seq1((+g‘𝐻), (ℕ × {𝑋}))‘-𝑁)))) | 
| 61 | 16, 60 | eqtrd 2229 | 
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐻)‘(seq1((+g‘𝐻), (ℕ × {𝑋}))‘-𝑁)))) | 
| 62 |   | 0zd 9338 | 
. . . . 5
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 0 ∈ ℤ) | 
| 63 |   | zdceq 9401 | 
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) | 
| 64 | 19, 62, 63 | syl2anc 411 | 
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → DECID 𝑁 = 0) | 
| 65 | 61, 64 | ifeq2dadc 3592 | 
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → if(𝑁 = 0, (0g‘𝐻), if(0 < 𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g‘𝐻), if(0 < 𝑁, (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐻)‘(seq1((+g‘𝐻), (ℕ × {𝑋}))‘-𝑁))))) | 
| 66 | 5, 65 | eqtrd 2229 | 
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g‘𝐻), if(0 < 𝑁, (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐻)‘(seq1((+g‘𝐻), (ℕ × {𝑋}))‘-𝑁))))) | 
| 67 | 32, 7, 2, 46, 38, 39 | mulgval 13252 | 
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁))))) | 
| 68 | 19, 36, 67 | syl2anc 411 | 
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁))))) | 
| 69 | 1 | subgbas 13308 | 
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) | 
| 70 | 69 | 3ad2ant1 1020 | 
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑆 = (Base‘𝐻)) | 
| 71 | 35, 70 | eleqtrd 2275 | 
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐻)) | 
| 72 |   | eqid 2196 | 
. . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) | 
| 73 |   | eqid 2196 | 
. . . 4
⊢
(+g‘𝐻) = (+g‘𝐻) | 
| 74 |   | eqid 2196 | 
. . . 4
⊢
(0g‘𝐻) = (0g‘𝐻) | 
| 75 |   | subgmulg.t | 
. . . 4
⊢  ∙ =
(.g‘𝐻) | 
| 76 |   | eqid 2196 | 
. . . 4
⊢
seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋})) | 
| 77 | 72, 73, 74, 47, 75, 76 | mulgval 13252 | 
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 ∙ 𝑋) = if(𝑁 = 0, (0g‘𝐻), if(0 < 𝑁, (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐻)‘(seq1((+g‘𝐻), (ℕ × {𝑋}))‘-𝑁))))) | 
| 78 | 19, 71, 77 | syl2anc 411 | 
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 ∙ 𝑋) = if(𝑁 = 0, (0g‘𝐻), if(0 < 𝑁, (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁), ((invg‘𝐻)‘(seq1((+g‘𝐻), (ℕ × {𝑋}))‘-𝑁))))) | 
| 79 | 66, 68, 78 | 3eqtr4d 2239 | 
1
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = (𝑁 ∙ 𝑋)) |