ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgmulg GIF version

Theorem subgmulg 13318
Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
subgmulgcl.t · = (.g𝐺)
subgmulg.h 𝐻 = (𝐺s 𝑆)
subgmulg.t = (.g𝐻)
Assertion
Ref Expression
subgmulg ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (𝑁 𝑋))

Proof of Theorem subgmulg
StepHypRef Expression
1 subgmulg.h . . . . . 6 𝐻 = (𝐺s 𝑆)
2 eqid 2196 . . . . . 6 (0g𝐺) = (0g𝐺)
31, 2subg0 13310 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
433ad2ant1 1020 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (0g𝐺) = (0g𝐻))
54ifeq1d 3578 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
61a1i 9 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑆))
7 eqid 2196 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
87a1i 9 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐺))
9 id 19 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
10 subgrcl 13309 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
116, 8, 9, 10ressplusgd 12806 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
12113ad2ant1 1020 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (+g𝐺) = (+g𝐻))
1312seqeq2d 10546 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1413adantr 276 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1514fveq1d 5560 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
1615ifeq1d 3578 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))))
17 simprl 529 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ¬ 𝑁 = 0)
18 simprr 531 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ¬ 0 < 𝑁)
19 simp2 1000 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℤ)
20 ztri3or0 9368 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
2119, 20syl 14 . . . . . . . . . . 11 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
2221adantr 276 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
2317, 18, 22ecase23d 1361 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → 𝑁 < 0)
24 simpl1 1002 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑆 ∈ (SubGrp‘𝐺))
2519adantr 276 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑁 ∈ ℤ)
2625znegcld 9450 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℤ)
2719zred 9448 . . . . . . . . . . . . . . 15 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℝ)
2827lt0neg1d 8542 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ↔ 0 < -𝑁))
2928biimpa 296 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 0 < -𝑁)
30 elnnz 9336 . . . . . . . . . . . . 13 (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 < -𝑁))
3126, 29, 30sylanbrc 417 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℕ)
32 eqid 2196 . . . . . . . . . . . . . . . 16 (Base‘𝐺) = (Base‘𝐺)
3332subgss 13304 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
34333ad2ant1 1020 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆 ⊆ (Base‘𝐺))
35 simp3 1001 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝑆)
3634, 35sseldd 3184 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
3736adantr 276 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑋 ∈ (Base‘𝐺))
38 subgmulgcl.t . . . . . . . . . . . . 13 · = (.g𝐺)
39 eqid 2196 . . . . . . . . . . . . 13 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
4032, 7, 38, 39mulgnn 13256 . . . . . . . . . . . 12 ((-𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (-𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))
4131, 37, 40syl2anc 411 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))
4235adantr 276 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑋𝑆)
4338subgmulgcl 13317 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ -𝑁 ∈ ℤ ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
4424, 26, 42, 43syl3anc 1249 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) ∈ 𝑆)
4541, 44eqeltrrd 2274 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆)
46 eqid 2196 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
47 eqid 2196 . . . . . . . . . . 11 (invg𝐻) = (invg𝐻)
481, 46, 47subginv 13311 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
4924, 45, 48syl2anc 411 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
5023, 49syldan 282 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
5113adantr 276 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
5251fveq1d 5560 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))
5352fveq2d 5562 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5450, 53eqtrd 2229 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5554anassrs 400 . . . . . 6 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
56 0z 9337 . . . . . . 7 0 ∈ ℤ
5719adantr 276 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
58 zdclt 9403 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 0 < 𝑁)
5956, 57, 58sylancr 414 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → DECID 0 < 𝑁)
6055, 59ifeq2dadc 3592 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))))
6116, 60eqtrd 2229 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))))
62 0zd 9338 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 0 ∈ ℤ)
63 zdceq 9401 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
6419, 62, 63syl2anc 411 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → DECID 𝑁 = 0)
6561, 64ifeq2dadc 3592 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
665, 65eqtrd 2229 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
6732, 7, 2, 46, 38, 39mulgval 13252 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
6819, 36, 67syl2anc 411 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
691subgbas 13308 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
70693ad2ant1 1020 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆 = (Base‘𝐻))
7135, 70eleqtrd 2275 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
72 eqid 2196 . . . 4 (Base‘𝐻) = (Base‘𝐻)
73 eqid 2196 . . . 4 (+g𝐻) = (+g𝐻)
74 eqid 2196 . . . 4 (0g𝐻) = (0g𝐻)
75 subgmulg.t . . . 4 = (.g𝐻)
76 eqid 2196 . . . 4 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
7772, 73, 74, 47, 75, 76mulgval 13252 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 𝑋) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
7819, 71, 77syl2anc 411 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 𝑋) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
7966, 68, 783eqtr4d 2239 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (𝑁 𝑋))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835  w3o 979  w3a 980   = wceq 1364  wcel 2167  wss 3157  ifcif 3561  {csn 3622   class class class wbr 4033   × cxp 4661  cfv 5258  (class class class)co 5922  0cc0 7879  1c1 7880   < clt 8061  -cneg 8198  cn 8990  cz 9326  seqcseq 10539  Basecbs 12678  s cress 12679  +gcplusg 12755  0gc0g 12927  Grpcgrp 13132  invgcminusg 13133  .gcmg 13249  SubGrpcsubg 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mulg 13250  df-subg 13300
This theorem is referenced by:  zringmulg  14154
  Copyright terms: Public domain W3C validator