ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgmulg GIF version

Theorem subgmulg 13720
Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
subgmulgcl.t · = (.g𝐺)
subgmulg.h 𝐻 = (𝐺s 𝑆)
subgmulg.t = (.g𝐻)
Assertion
Ref Expression
subgmulg ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (𝑁 𝑋))

Proof of Theorem subgmulg
StepHypRef Expression
1 subgmulg.h . . . . . 6 𝐻 = (𝐺s 𝑆)
2 eqid 2229 . . . . . 6 (0g𝐺) = (0g𝐺)
31, 2subg0 13712 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
433ad2ant1 1042 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (0g𝐺) = (0g𝐻))
54ifeq1d 3620 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
61a1i 9 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑆))
7 eqid 2229 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
87a1i 9 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐺))
9 id 19 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
10 subgrcl 13711 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
116, 8, 9, 10ressplusgd 13157 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
12113ad2ant1 1042 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (+g𝐺) = (+g𝐻))
1312seqeq2d 10671 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1413adantr 276 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1514fveq1d 5628 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
1615ifeq1d 3620 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))))
17 simprl 529 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ¬ 𝑁 = 0)
18 simprr 531 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ¬ 0 < 𝑁)
19 simp2 1022 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℤ)
20 ztri3or0 9484 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
2119, 20syl 14 . . . . . . . . . . 11 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
2221adantr 276 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
2317, 18, 22ecase23d 1384 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → 𝑁 < 0)
24 simpl1 1024 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑆 ∈ (SubGrp‘𝐺))
2519adantr 276 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑁 ∈ ℤ)
2625znegcld 9567 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℤ)
2719zred 9565 . . . . . . . . . . . . . . 15 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℝ)
2827lt0neg1d 8658 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ↔ 0 < -𝑁))
2928biimpa 296 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 0 < -𝑁)
30 elnnz 9452 . . . . . . . . . . . . 13 (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 < -𝑁))
3126, 29, 30sylanbrc 417 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℕ)
32 eqid 2229 . . . . . . . . . . . . . . . 16 (Base‘𝐺) = (Base‘𝐺)
3332subgss 13706 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
34333ad2ant1 1042 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆 ⊆ (Base‘𝐺))
35 simp3 1023 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝑆)
3634, 35sseldd 3225 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
3736adantr 276 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑋 ∈ (Base‘𝐺))
38 subgmulgcl.t . . . . . . . . . . . . 13 · = (.g𝐺)
39 eqid 2229 . . . . . . . . . . . . 13 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
4032, 7, 38, 39mulgnn 13658 . . . . . . . . . . . 12 ((-𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (-𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))
4131, 37, 40syl2anc 411 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))
4235adantr 276 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑋𝑆)
4338subgmulgcl 13719 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ -𝑁 ∈ ℤ ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
4424, 26, 42, 43syl3anc 1271 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) ∈ 𝑆)
4541, 44eqeltrrd 2307 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆)
46 eqid 2229 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
47 eqid 2229 . . . . . . . . . . 11 (invg𝐻) = (invg𝐻)
481, 46, 47subginv 13713 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
4924, 45, 48syl2anc 411 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
5023, 49syldan 282 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
5113adantr 276 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
5251fveq1d 5628 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))
5352fveq2d 5630 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5450, 53eqtrd 2262 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5554anassrs 400 . . . . . 6 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
56 0z 9453 . . . . . . 7 0 ∈ ℤ
5719adantr 276 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
58 zdclt 9520 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 0 < 𝑁)
5956, 57, 58sylancr 414 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → DECID 0 < 𝑁)
6055, 59ifeq2dadc 3634 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))))
6116, 60eqtrd 2262 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))))
62 0zd 9454 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 0 ∈ ℤ)
63 zdceq 9518 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
6419, 62, 63syl2anc 411 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → DECID 𝑁 = 0)
6561, 64ifeq2dadc 3634 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
665, 65eqtrd 2262 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
6732, 7, 2, 46, 38, 39mulgval 13654 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
6819, 36, 67syl2anc 411 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
691subgbas 13710 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
70693ad2ant1 1042 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆 = (Base‘𝐻))
7135, 70eleqtrd 2308 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
72 eqid 2229 . . . 4 (Base‘𝐻) = (Base‘𝐻)
73 eqid 2229 . . . 4 (+g𝐻) = (+g𝐻)
74 eqid 2229 . . . 4 (0g𝐻) = (0g𝐻)
75 subgmulg.t . . . 4 = (.g𝐻)
76 eqid 2229 . . . 4 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
7772, 73, 74, 47, 75, 76mulgval 13654 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 𝑋) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
7819, 71, 77syl2anc 411 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 𝑋) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
7966, 68, 783eqtr4d 2272 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (𝑁 𝑋))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 839  w3o 1001  w3a 1002   = wceq 1395  wcel 2200  wss 3197  ifcif 3602  {csn 3666   class class class wbr 4082   × cxp 4716  cfv 5317  (class class class)co 6000  0cc0 7995  1c1 7996   < clt 8177  -cneg 8314  cn 9106  cz 9442  seqcseq 10664  Basecbs 13027  s cress 13028  +gcplusg 13105  0gc0g 13284  Grpcgrp 13528  invgcminusg 13529  .gcmg 13651  SubGrpcsubg 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-mulg 13652  df-subg 13702
This theorem is referenced by:  zringmulg  14556
  Copyright terms: Public domain W3C validator