ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfng GIF version

Theorem mulgfng 13194
Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgfn.b 𝐵 = (Base‘𝐺)
mulgfn.t · = (.g𝐺)
Assertion
Ref Expression
mulgfng (𝐺𝑉· Fn (ℤ × 𝐵))

Proof of Theorem mulgfng
Dummy variables 𝑢 𝑣 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . . . . . 7 (𝐺𝑉𝐺 ∈ V)
2 fn0g 12958 . . . . . . . 8 0g Fn V
3 funfvex 5571 . . . . . . . . 9 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
43funfni 5354 . . . . . . . 8 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
52, 4mpan 424 . . . . . . 7 (𝐺 ∈ V → (0g𝐺) ∈ V)
61, 5syl 14 . . . . . 6 (𝐺𝑉 → (0g𝐺) ∈ V)
76ad2antrr 488 . . . . 5 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ 𝑛 = 0) → (0g𝐺) ∈ V)
8 nnuz 9628 . . . . . . . . . 10 ℕ = (ℤ‘1)
9 1zzd 9344 . . . . . . . . . 10 ((𝐺𝑉𝑥𝐵) → 1 ∈ ℤ)
10 fvconst2g 5772 . . . . . . . . . . . . 13 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) = 𝑥)
11 simpl 109 . . . . . . . . . . . . 13 ((𝑥𝐵𝑢 ∈ ℕ) → 𝑥𝐵)
1210, 11eqeltrd 2270 . . . . . . . . . . . 12 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ 𝐵)
1312elexd 2773 . . . . . . . . . . 11 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ V)
1413adantll 476 . . . . . . . . . 10 (((𝐺𝑉𝑥𝐵) ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ V)
15 simprl 529 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V)
16 plusgslid 12730 . . . . . . . . . . . . 13 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1716slotex 12645 . . . . . . . . . . . 12 (𝐺𝑉 → (+g𝐺) ∈ V)
1817ad2antrr 488 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (+g𝐺) ∈ V)
19 simprr 531 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
20 ovexg 5952 . . . . . . . . . . 11 ((𝑢 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑣 ∈ V) → (𝑢(+g𝐺)𝑣) ∈ V)
2115, 18, 19, 20syl3anc 1249 . . . . . . . . . 10 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g𝐺)𝑣) ∈ V)
228, 9, 14, 21seqf 10535 . . . . . . . . 9 ((𝐺𝑉𝑥𝐵) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
2322adantrl 478 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
2423ad2antrr 488 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
25 simprl 529 . . . . . . . . 9 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 𝑛 ∈ ℤ)
2625ad2antrr 488 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 𝑛 ∈ ℤ)
27 simpr 110 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 0 < 𝑛)
28 elnnz 9327 . . . . . . . 8 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
2926, 27, 28sylanbrc 417 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 𝑛 ∈ ℕ)
3024, 29ffvelcdmd 5694 . . . . . 6 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛) ∈ V)
31 mulgfn.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
32 eqid 2193 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
3331, 32grpinvfng 13116 . . . . . . . . 9 (𝐺𝑉 → (invg𝐺) Fn 𝐵)
34 basfn 12676 . . . . . . . . . . . 12 Base Fn V
35 funfvex 5571 . . . . . . . . . . . . 13 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
3635funfni 5354 . . . . . . . . . . . 12 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
3734, 36mpan 424 . . . . . . . . . . 11 (𝐺 ∈ V → (Base‘𝐺) ∈ V)
3831, 37eqeltrid 2280 . . . . . . . . . 10 (𝐺 ∈ V → 𝐵 ∈ V)
391, 38syl 14 . . . . . . . . 9 (𝐺𝑉𝐵 ∈ V)
40 fnex 5780 . . . . . . . . 9 (((invg𝐺) Fn 𝐵𝐵 ∈ V) → (invg𝐺) ∈ V)
4133, 39, 40syl2anc 411 . . . . . . . 8 (𝐺𝑉 → (invg𝐺) ∈ V)
4241ad3antrrr 492 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (invg𝐺) ∈ V)
4323ad2antrr 488 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
4425znegcld 9441 . . . . . . . . . 10 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → -𝑛 ∈ ℤ)
4544ad2antrr 488 . . . . . . . . 9 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → -𝑛 ∈ ℤ)
46 simplr 528 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ¬ 𝑛 = 0)
47 simpr 110 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ¬ 0 < 𝑛)
48 ztri3or0 9359 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
4925, 48syl 14 . . . . . . . . . . . 12 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
5049ad2antrr 488 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
5146, 47, 50ecase23d 1361 . . . . . . . . . 10 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 𝑛 < 0)
5225zred 9439 . . . . . . . . . . . 12 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 𝑛 ∈ ℝ)
5352ad2antrr 488 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 𝑛 ∈ ℝ)
5453lt0neg1d 8534 . . . . . . . . . 10 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (𝑛 < 0 ↔ 0 < -𝑛))
5551, 54mpbid 147 . . . . . . . . 9 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 0 < -𝑛)
56 elnnz 9327 . . . . . . . . 9 (-𝑛 ∈ ℕ ↔ (-𝑛 ∈ ℤ ∧ 0 < -𝑛))
5745, 55, 56sylanbrc 417 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → -𝑛 ∈ ℕ)
5843, 57ffvelcdmd 5694 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛) ∈ V)
59 fvexg 5573 . . . . . . 7 (((invg𝐺) ∈ V ∧ (seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛) ∈ V) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)) ∈ V)
6042, 58, 59syl2anc 411 . . . . . 6 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)) ∈ V)
61 0zd 9329 . . . . . . 7 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → 0 ∈ ℤ)
62 simplrl 535 . . . . . . 7 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℤ)
63 zdclt 9394 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑛 ∈ ℤ) → DECID 0 < 𝑛)
6461, 62, 63syl2anc 411 . . . . . 6 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → DECID 0 < 𝑛)
6530, 60, 64ifcldadc 3586 . . . . 5 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))) ∈ V)
66 0zd 9329 . . . . . 6 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 0 ∈ ℤ)
67 zdceq 9392 . . . . . 6 ((𝑛 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑛 = 0)
6825, 66, 67syl2anc 411 . . . . 5 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → DECID 𝑛 = 0)
697, 65, 68ifcldadc 3586 . . . 4 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V)
7069ralrimivva 2576 . . 3 (𝐺𝑉 → ∀𝑛 ∈ ℤ ∀𝑥𝐵 if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V)
71 eqid 2193 . . . 4 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))))
7271fnmpo 6255 . . 3 (∀𝑛 ∈ ℤ ∀𝑥𝐵 if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵))
7370, 72syl 14 . 2 (𝐺𝑉 → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵))
74 eqid 2193 . . . 4 (+g𝐺) = (+g𝐺)
75 eqid 2193 . . . 4 (0g𝐺) = (0g𝐺)
76 mulgfn.t . . . 4 · = (.g𝐺)
7731, 74, 75, 32, 76mulgfvalg 13191 . . 3 (𝐺𝑉· = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))))
7877fneq1d 5344 . 2 (𝐺𝑉 → ( · Fn (ℤ × 𝐵) ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵)))
7973, 78mpbird 167 1 (𝐺𝑉· Fn (ℤ × 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835  w3o 979   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  ifcif 3557  {csn 3618   class class class wbr 4029   × cxp 4657   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  cmpo 5920  cr 7871  0cc0 7872  1c1 7873   < clt 8054  -cneg 8191  cn 8982  cz 9317  seqcseq 10518  Basecbs 12618  +gcplusg 12695  0gc0g 12867  invgcminusg 13073  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-minusg 13076  df-mulg 13190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator