ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfng GIF version

Theorem mulgfng 13656
Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgfn.b 𝐵 = (Base‘𝐺)
mulgfn.t · = (.g𝐺)
Assertion
Ref Expression
mulgfng (𝐺𝑉· Fn (ℤ × 𝐵))

Proof of Theorem mulgfng
Dummy variables 𝑢 𝑣 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . . . . . 7 (𝐺𝑉𝐺 ∈ V)
2 fn0g 13403 . . . . . . . 8 0g Fn V
3 funfvex 5643 . . . . . . . . 9 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
43funfni 5422 . . . . . . . 8 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
52, 4mpan 424 . . . . . . 7 (𝐺 ∈ V → (0g𝐺) ∈ V)
61, 5syl 14 . . . . . 6 (𝐺𝑉 → (0g𝐺) ∈ V)
76ad2antrr 488 . . . . 5 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ 𝑛 = 0) → (0g𝐺) ∈ V)
8 nnuz 9754 . . . . . . . . . 10 ℕ = (ℤ‘1)
9 1zzd 9469 . . . . . . . . . 10 ((𝐺𝑉𝑥𝐵) → 1 ∈ ℤ)
10 fvconst2g 5852 . . . . . . . . . . . . 13 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) = 𝑥)
11 simpl 109 . . . . . . . . . . . . 13 ((𝑥𝐵𝑢 ∈ ℕ) → 𝑥𝐵)
1210, 11eqeltrd 2306 . . . . . . . . . . . 12 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ 𝐵)
1312elexd 2813 . . . . . . . . . . 11 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ V)
1413adantll 476 . . . . . . . . . 10 (((𝐺𝑉𝑥𝐵) ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ V)
15 simprl 529 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V)
16 plusgslid 13140 . . . . . . . . . . . . 13 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1716slotex 13054 . . . . . . . . . . . 12 (𝐺𝑉 → (+g𝐺) ∈ V)
1817ad2antrr 488 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (+g𝐺) ∈ V)
19 simprr 531 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
20 ovexg 6034 . . . . . . . . . . 11 ((𝑢 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑣 ∈ V) → (𝑢(+g𝐺)𝑣) ∈ V)
2115, 18, 19, 20syl3anc 1271 . . . . . . . . . 10 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g𝐺)𝑣) ∈ V)
228, 9, 14, 21seqf 10681 . . . . . . . . 9 ((𝐺𝑉𝑥𝐵) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
2322adantrl 478 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
2423ad2antrr 488 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
25 simprl 529 . . . . . . . . 9 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 𝑛 ∈ ℤ)
2625ad2antrr 488 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 𝑛 ∈ ℤ)
27 simpr 110 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 0 < 𝑛)
28 elnnz 9452 . . . . . . . 8 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
2926, 27, 28sylanbrc 417 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 𝑛 ∈ ℕ)
3024, 29ffvelcdmd 5770 . . . . . 6 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛) ∈ V)
31 mulgfn.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
32 eqid 2229 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
3331, 32grpinvfng 13572 . . . . . . . . 9 (𝐺𝑉 → (invg𝐺) Fn 𝐵)
34 basfn 13086 . . . . . . . . . . . 12 Base Fn V
35 funfvex 5643 . . . . . . . . . . . . 13 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
3635funfni 5422 . . . . . . . . . . . 12 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
3734, 36mpan 424 . . . . . . . . . . 11 (𝐺 ∈ V → (Base‘𝐺) ∈ V)
3831, 37eqeltrid 2316 . . . . . . . . . 10 (𝐺 ∈ V → 𝐵 ∈ V)
391, 38syl 14 . . . . . . . . 9 (𝐺𝑉𝐵 ∈ V)
40 fnex 5860 . . . . . . . . 9 (((invg𝐺) Fn 𝐵𝐵 ∈ V) → (invg𝐺) ∈ V)
4133, 39, 40syl2anc 411 . . . . . . . 8 (𝐺𝑉 → (invg𝐺) ∈ V)
4241ad3antrrr 492 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (invg𝐺) ∈ V)
4323ad2antrr 488 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
4425znegcld 9567 . . . . . . . . . 10 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → -𝑛 ∈ ℤ)
4544ad2antrr 488 . . . . . . . . 9 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → -𝑛 ∈ ℤ)
46 simplr 528 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ¬ 𝑛 = 0)
47 simpr 110 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ¬ 0 < 𝑛)
48 ztri3or0 9484 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
4925, 48syl 14 . . . . . . . . . . . 12 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
5049ad2antrr 488 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
5146, 47, 50ecase23d 1384 . . . . . . . . . 10 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 𝑛 < 0)
5225zred 9565 . . . . . . . . . . . 12 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 𝑛 ∈ ℝ)
5352ad2antrr 488 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 𝑛 ∈ ℝ)
5453lt0neg1d 8658 . . . . . . . . . 10 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (𝑛 < 0 ↔ 0 < -𝑛))
5551, 54mpbid 147 . . . . . . . . 9 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 0 < -𝑛)
56 elnnz 9452 . . . . . . . . 9 (-𝑛 ∈ ℕ ↔ (-𝑛 ∈ ℤ ∧ 0 < -𝑛))
5745, 55, 56sylanbrc 417 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → -𝑛 ∈ ℕ)
5843, 57ffvelcdmd 5770 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛) ∈ V)
59 fvexg 5645 . . . . . . 7 (((invg𝐺) ∈ V ∧ (seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛) ∈ V) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)) ∈ V)
6042, 58, 59syl2anc 411 . . . . . 6 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)) ∈ V)
61 0zd 9454 . . . . . . 7 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → 0 ∈ ℤ)
62 simplrl 535 . . . . . . 7 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℤ)
63 zdclt 9520 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑛 ∈ ℤ) → DECID 0 < 𝑛)
6461, 62, 63syl2anc 411 . . . . . 6 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → DECID 0 < 𝑛)
6530, 60, 64ifcldadc 3632 . . . . 5 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))) ∈ V)
66 0zd 9454 . . . . . 6 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 0 ∈ ℤ)
67 zdceq 9518 . . . . . 6 ((𝑛 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑛 = 0)
6825, 66, 67syl2anc 411 . . . . 5 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → DECID 𝑛 = 0)
697, 65, 68ifcldadc 3632 . . . 4 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V)
7069ralrimivva 2612 . . 3 (𝐺𝑉 → ∀𝑛 ∈ ℤ ∀𝑥𝐵 if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V)
71 eqid 2229 . . . 4 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))))
7271fnmpo 6346 . . 3 (∀𝑛 ∈ ℤ ∀𝑥𝐵 if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵))
7370, 72syl 14 . 2 (𝐺𝑉 → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵))
74 eqid 2229 . . . 4 (+g𝐺) = (+g𝐺)
75 eqid 2229 . . . 4 (0g𝐺) = (0g𝐺)
76 mulgfn.t . . . 4 · = (.g𝐺)
7731, 74, 75, 32, 76mulgfvalg 13653 . . 3 (𝐺𝑉· = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))))
7877fneq1d 5410 . 2 (𝐺𝑉 → ( · Fn (ℤ × 𝐵) ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵)))
7973, 78mpbird 167 1 (𝐺𝑉· Fn (ℤ × 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 839  w3o 1001   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  ifcif 3602  {csn 3666   class class class wbr 4082   × cxp 4716   Fn wfn 5312  wf 5313  cfv 5317  (class class class)co 6000  cmpo 6002  cr 7994  0cc0 7995  1c1 7996   < clt 8177  -cneg 8314  cn 9106  cz 9442  seqcseq 10664  Basecbs 13027  +gcplusg 13105  0gc0g 13284  invgcminusg 13529  .gcmg 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-minusg 13532  df-mulg 13652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator