ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfng GIF version

Theorem mulgfng 13378
Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgfn.b 𝐵 = (Base‘𝐺)
mulgfn.t · = (.g𝐺)
Assertion
Ref Expression
mulgfng (𝐺𝑉· Fn (ℤ × 𝐵))

Proof of Theorem mulgfng
Dummy variables 𝑢 𝑣 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2782 . . . . . . 7 (𝐺𝑉𝐺 ∈ V)
2 fn0g 13125 . . . . . . . 8 0g Fn V
3 funfvex 5587 . . . . . . . . 9 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
43funfni 5370 . . . . . . . 8 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
52, 4mpan 424 . . . . . . 7 (𝐺 ∈ V → (0g𝐺) ∈ V)
61, 5syl 14 . . . . . 6 (𝐺𝑉 → (0g𝐺) ∈ V)
76ad2antrr 488 . . . . 5 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ 𝑛 = 0) → (0g𝐺) ∈ V)
8 nnuz 9666 . . . . . . . . . 10 ℕ = (ℤ‘1)
9 1zzd 9381 . . . . . . . . . 10 ((𝐺𝑉𝑥𝐵) → 1 ∈ ℤ)
10 fvconst2g 5788 . . . . . . . . . . . . 13 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) = 𝑥)
11 simpl 109 . . . . . . . . . . . . 13 ((𝑥𝐵𝑢 ∈ ℕ) → 𝑥𝐵)
1210, 11eqeltrd 2281 . . . . . . . . . . . 12 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ 𝐵)
1312elexd 2784 . . . . . . . . . . 11 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ V)
1413adantll 476 . . . . . . . . . 10 (((𝐺𝑉𝑥𝐵) ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ V)
15 simprl 529 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V)
16 plusgslid 12863 . . . . . . . . . . . . 13 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1716slotex 12778 . . . . . . . . . . . 12 (𝐺𝑉 → (+g𝐺) ∈ V)
1817ad2antrr 488 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (+g𝐺) ∈ V)
19 simprr 531 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
20 ovexg 5968 . . . . . . . . . . 11 ((𝑢 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑣 ∈ V) → (𝑢(+g𝐺)𝑣) ∈ V)
2115, 18, 19, 20syl3anc 1249 . . . . . . . . . 10 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g𝐺)𝑣) ∈ V)
228, 9, 14, 21seqf 10590 . . . . . . . . 9 ((𝐺𝑉𝑥𝐵) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
2322adantrl 478 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
2423ad2antrr 488 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
25 simprl 529 . . . . . . . . 9 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 𝑛 ∈ ℤ)
2625ad2antrr 488 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 𝑛 ∈ ℤ)
27 simpr 110 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 0 < 𝑛)
28 elnnz 9364 . . . . . . . 8 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
2926, 27, 28sylanbrc 417 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 𝑛 ∈ ℕ)
3024, 29ffvelcdmd 5710 . . . . . 6 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛) ∈ V)
31 mulgfn.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
32 eqid 2204 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
3331, 32grpinvfng 13294 . . . . . . . . 9 (𝐺𝑉 → (invg𝐺) Fn 𝐵)
34 basfn 12809 . . . . . . . . . . . 12 Base Fn V
35 funfvex 5587 . . . . . . . . . . . . 13 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
3635funfni 5370 . . . . . . . . . . . 12 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
3734, 36mpan 424 . . . . . . . . . . 11 (𝐺 ∈ V → (Base‘𝐺) ∈ V)
3831, 37eqeltrid 2291 . . . . . . . . . 10 (𝐺 ∈ V → 𝐵 ∈ V)
391, 38syl 14 . . . . . . . . 9 (𝐺𝑉𝐵 ∈ V)
40 fnex 5796 . . . . . . . . 9 (((invg𝐺) Fn 𝐵𝐵 ∈ V) → (invg𝐺) ∈ V)
4133, 39, 40syl2anc 411 . . . . . . . 8 (𝐺𝑉 → (invg𝐺) ∈ V)
4241ad3antrrr 492 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (invg𝐺) ∈ V)
4323ad2antrr 488 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
4425znegcld 9479 . . . . . . . . . 10 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → -𝑛 ∈ ℤ)
4544ad2antrr 488 . . . . . . . . 9 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → -𝑛 ∈ ℤ)
46 simplr 528 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ¬ 𝑛 = 0)
47 simpr 110 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ¬ 0 < 𝑛)
48 ztri3or0 9396 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
4925, 48syl 14 . . . . . . . . . . . 12 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
5049ad2antrr 488 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
5146, 47, 50ecase23d 1362 . . . . . . . . . 10 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 𝑛 < 0)
5225zred 9477 . . . . . . . . . . . 12 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 𝑛 ∈ ℝ)
5352ad2antrr 488 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 𝑛 ∈ ℝ)
5453lt0neg1d 8570 . . . . . . . . . 10 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (𝑛 < 0 ↔ 0 < -𝑛))
5551, 54mpbid 147 . . . . . . . . 9 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 0 < -𝑛)
56 elnnz 9364 . . . . . . . . 9 (-𝑛 ∈ ℕ ↔ (-𝑛 ∈ ℤ ∧ 0 < -𝑛))
5745, 55, 56sylanbrc 417 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → -𝑛 ∈ ℕ)
5843, 57ffvelcdmd 5710 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛) ∈ V)
59 fvexg 5589 . . . . . . 7 (((invg𝐺) ∈ V ∧ (seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛) ∈ V) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)) ∈ V)
6042, 58, 59syl2anc 411 . . . . . 6 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)) ∈ V)
61 0zd 9366 . . . . . . 7 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → 0 ∈ ℤ)
62 simplrl 535 . . . . . . 7 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℤ)
63 zdclt 9432 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑛 ∈ ℤ) → DECID 0 < 𝑛)
6461, 62, 63syl2anc 411 . . . . . 6 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → DECID 0 < 𝑛)
6530, 60, 64ifcldadc 3599 . . . . 5 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))) ∈ V)
66 0zd 9366 . . . . . 6 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 0 ∈ ℤ)
67 zdceq 9430 . . . . . 6 ((𝑛 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑛 = 0)
6825, 66, 67syl2anc 411 . . . . 5 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → DECID 𝑛 = 0)
697, 65, 68ifcldadc 3599 . . . 4 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V)
7069ralrimivva 2587 . . 3 (𝐺𝑉 → ∀𝑛 ∈ ℤ ∀𝑥𝐵 if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V)
71 eqid 2204 . . . 4 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))))
7271fnmpo 6278 . . 3 (∀𝑛 ∈ ℤ ∀𝑥𝐵 if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵))
7370, 72syl 14 . 2 (𝐺𝑉 → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵))
74 eqid 2204 . . . 4 (+g𝐺) = (+g𝐺)
75 eqid 2204 . . . 4 (0g𝐺) = (0g𝐺)
76 mulgfn.t . . . 4 · = (.g𝐺)
7731, 74, 75, 32, 76mulgfvalg 13375 . . 3 (𝐺𝑉· = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))))
7877fneq1d 5358 . 2 (𝐺𝑉 → ( · Fn (ℤ × 𝐵) ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵)))
7973, 78mpbird 167 1 (𝐺𝑉· Fn (ℤ × 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835  w3o 979   = wceq 1372  wcel 2175  wral 2483  Vcvv 2771  ifcif 3570  {csn 3632   class class class wbr 4043   × cxp 4671   Fn wfn 5263  wf 5264  cfv 5268  (class class class)co 5934  cmpo 5936  cr 7906  0cc0 7907  1c1 7908   < clt 8089  -cneg 8226  cn 9018  cz 9354  seqcseq 10573  Basecbs 12751  +gcplusg 12828  0gc0g 13006  invgcminusg 13251  .gcmg 13373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-2 9077  df-n0 9278  df-z 9355  df-uz 9631  df-seqfrec 10574  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-0g 13008  df-minusg 13254  df-mulg 13374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator