ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfng GIF version

Theorem mulgfng 13535
Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgfn.b 𝐵 = (Base‘𝐺)
mulgfn.t · = (.g𝐺)
Assertion
Ref Expression
mulgfng (𝐺𝑉· Fn (ℤ × 𝐵))

Proof of Theorem mulgfng
Dummy variables 𝑢 𝑣 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2785 . . . . . . 7 (𝐺𝑉𝐺 ∈ V)
2 fn0g 13282 . . . . . . . 8 0g Fn V
3 funfvex 5606 . . . . . . . . 9 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
43funfni 5385 . . . . . . . 8 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
52, 4mpan 424 . . . . . . 7 (𝐺 ∈ V → (0g𝐺) ∈ V)
61, 5syl 14 . . . . . 6 (𝐺𝑉 → (0g𝐺) ∈ V)
76ad2antrr 488 . . . . 5 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ 𝑛 = 0) → (0g𝐺) ∈ V)
8 nnuz 9704 . . . . . . . . . 10 ℕ = (ℤ‘1)
9 1zzd 9419 . . . . . . . . . 10 ((𝐺𝑉𝑥𝐵) → 1 ∈ ℤ)
10 fvconst2g 5811 . . . . . . . . . . . . 13 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) = 𝑥)
11 simpl 109 . . . . . . . . . . . . 13 ((𝑥𝐵𝑢 ∈ ℕ) → 𝑥𝐵)
1210, 11eqeltrd 2283 . . . . . . . . . . . 12 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ 𝐵)
1312elexd 2787 . . . . . . . . . . 11 ((𝑥𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ V)
1413adantll 476 . . . . . . . . . 10 (((𝐺𝑉𝑥𝐵) ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑥})‘𝑢) ∈ V)
15 simprl 529 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V)
16 plusgslid 13019 . . . . . . . . . . . . 13 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1716slotex 12934 . . . . . . . . . . . 12 (𝐺𝑉 → (+g𝐺) ∈ V)
1817ad2antrr 488 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (+g𝐺) ∈ V)
19 simprr 531 . . . . . . . . . . 11 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
20 ovexg 5991 . . . . . . . . . . 11 ((𝑢 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑣 ∈ V) → (𝑢(+g𝐺)𝑣) ∈ V)
2115, 18, 19, 20syl3anc 1250 . . . . . . . . . 10 (((𝐺𝑉𝑥𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g𝐺)𝑣) ∈ V)
228, 9, 14, 21seqf 10631 . . . . . . . . 9 ((𝐺𝑉𝑥𝐵) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
2322adantrl 478 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
2423ad2antrr 488 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
25 simprl 529 . . . . . . . . 9 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 𝑛 ∈ ℤ)
2625ad2antrr 488 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 𝑛 ∈ ℤ)
27 simpr 110 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 0 < 𝑛)
28 elnnz 9402 . . . . . . . 8 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
2926, 27, 28sylanbrc 417 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → 𝑛 ∈ ℕ)
3024, 29ffvelcdmd 5729 . . . . . 6 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ 0 < 𝑛) → (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛) ∈ V)
31 mulgfn.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
32 eqid 2206 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
3331, 32grpinvfng 13451 . . . . . . . . 9 (𝐺𝑉 → (invg𝐺) Fn 𝐵)
34 basfn 12965 . . . . . . . . . . . 12 Base Fn V
35 funfvex 5606 . . . . . . . . . . . . 13 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
3635funfni 5385 . . . . . . . . . . . 12 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
3734, 36mpan 424 . . . . . . . . . . 11 (𝐺 ∈ V → (Base‘𝐺) ∈ V)
3831, 37eqeltrid 2293 . . . . . . . . . 10 (𝐺 ∈ V → 𝐵 ∈ V)
391, 38syl 14 . . . . . . . . 9 (𝐺𝑉𝐵 ∈ V)
40 fnex 5819 . . . . . . . . 9 (((invg𝐺) Fn 𝐵𝐵 ∈ V) → (invg𝐺) ∈ V)
4133, 39, 40syl2anc 411 . . . . . . . 8 (𝐺𝑉 → (invg𝐺) ∈ V)
4241ad3antrrr 492 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (invg𝐺) ∈ V)
4323ad2antrr 488 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → seq1((+g𝐺), (ℕ × {𝑥})):ℕ⟶V)
4425znegcld 9517 . . . . . . . . . 10 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → -𝑛 ∈ ℤ)
4544ad2antrr 488 . . . . . . . . 9 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → -𝑛 ∈ ℤ)
46 simplr 528 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ¬ 𝑛 = 0)
47 simpr 110 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ¬ 0 < 𝑛)
48 ztri3or0 9434 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
4925, 48syl 14 . . . . . . . . . . . 12 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
5049ad2antrr 488 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (𝑛 < 0 ∨ 𝑛 = 0 ∨ 0 < 𝑛))
5146, 47, 50ecase23d 1363 . . . . . . . . . 10 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 𝑛 < 0)
5225zred 9515 . . . . . . . . . . . 12 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 𝑛 ∈ ℝ)
5352ad2antrr 488 . . . . . . . . . . 11 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 𝑛 ∈ ℝ)
5453lt0neg1d 8608 . . . . . . . . . 10 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (𝑛 < 0 ↔ 0 < -𝑛))
5551, 54mpbid 147 . . . . . . . . 9 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → 0 < -𝑛)
56 elnnz 9402 . . . . . . . . 9 (-𝑛 ∈ ℕ ↔ (-𝑛 ∈ ℤ ∧ 0 < -𝑛))
5745, 55, 56sylanbrc 417 . . . . . . . 8 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → -𝑛 ∈ ℕ)
5843, 57ffvelcdmd 5729 . . . . . . 7 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → (seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛) ∈ V)
59 fvexg 5608 . . . . . . 7 (((invg𝐺) ∈ V ∧ (seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛) ∈ V) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)) ∈ V)
6042, 58, 59syl2anc 411 . . . . . 6 ((((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) ∧ ¬ 0 < 𝑛) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)) ∈ V)
61 0zd 9404 . . . . . . 7 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → 0 ∈ ℤ)
62 simplrl 535 . . . . . . 7 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℤ)
63 zdclt 9470 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑛 ∈ ℤ) → DECID 0 < 𝑛)
6461, 62, 63syl2anc 411 . . . . . 6 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → DECID 0 < 𝑛)
6530, 60, 64ifcldadc 3605 . . . . 5 (((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) ∧ ¬ 𝑛 = 0) → if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))) ∈ V)
66 0zd 9404 . . . . . 6 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → 0 ∈ ℤ)
67 zdceq 9468 . . . . . 6 ((𝑛 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑛 = 0)
6825, 66, 67syl2anc 411 . . . . 5 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → DECID 𝑛 = 0)
697, 65, 68ifcldadc 3605 . . . 4 ((𝐺𝑉 ∧ (𝑛 ∈ ℤ ∧ 𝑥𝐵)) → if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V)
7069ralrimivva 2589 . . 3 (𝐺𝑉 → ∀𝑛 ∈ ℤ ∀𝑥𝐵 if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V)
71 eqid 2206 . . . 4 (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))))
7271fnmpo 6301 . . 3 (∀𝑛 ∈ ℤ ∀𝑥𝐵 if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛)))) ∈ V → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵))
7370, 72syl 14 . 2 (𝐺𝑉 → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵))
74 eqid 2206 . . . 4 (+g𝐺) = (+g𝐺)
75 eqid 2206 . . . 4 (0g𝐺) = (0g𝐺)
76 mulgfn.t . . . 4 · = (.g𝐺)
7731, 74, 75, 32, 76mulgfvalg 13532 . . 3 (𝐺𝑉· = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))))
7877fneq1d 5373 . 2 (𝐺𝑉 → ( · Fn (ℤ × 𝐵) ↔ (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, (0g𝐺), if(0 < 𝑛, (seq1((+g𝐺), (ℕ × {𝑥}))‘𝑛), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑥}))‘-𝑛))))) Fn (ℤ × 𝐵)))
7973, 78mpbird 167 1 (𝐺𝑉· Fn (ℤ × 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 836  w3o 980   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  ifcif 3575  {csn 3638   class class class wbr 4051   × cxp 4681   Fn wfn 5275  wf 5276  cfv 5280  (class class class)co 5957  cmpo 5959  cr 7944  0cc0 7945  1c1 7946   < clt 8127  -cneg 8264  cn 9056  cz 9392  seqcseq 10614  Basecbs 12907  +gcplusg 12984  0gc0g 13163  invgcminusg 13408  .gcmg 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-seqfrec 10615  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-minusg 13411  df-mulg 13531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator