| Step | Hyp | Ref
| Expression |
| 1 | | eluz2nn 9640 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℕ) |
| 2 | | eleq1 2259 |
. . . 4
⊢ (𝑥 = 1 → (𝑥 ∈ (ℤ≥‘2)
↔ 1 ∈ (ℤ≥‘2))) |
| 3 | 2 | imbi1d 231 |
. . 3
⊢ (𝑥 = 1 → ((𝑥 ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ 𝑥) ↔ (1 ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑥))) |
| 4 | | eleq1 2259 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 ∈ (ℤ≥‘2)
↔ 𝑦 ∈
(ℤ≥‘2))) |
| 5 | | breq2 4037 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝑦)) |
| 6 | 5 | rexbidv 2498 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑦)) |
| 7 | 4, 6 | imbi12d 234 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ 𝑥) ↔ (𝑦 ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ 𝑦))) |
| 8 | | eleq1 2259 |
. . . 4
⊢ (𝑥 = 𝑧 → (𝑥 ∈ (ℤ≥‘2)
↔ 𝑧 ∈
(ℤ≥‘2))) |
| 9 | | breq2 4037 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝑧)) |
| 10 | 9 | rexbidv 2498 |
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑧)) |
| 11 | 8, 10 | imbi12d 234 |
. . 3
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ 𝑥) ↔ (𝑧 ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ 𝑧))) |
| 12 | | eleq1 2259 |
. . . 4
⊢ (𝑥 = (𝑦 · 𝑧) → (𝑥 ∈ (ℤ≥‘2)
↔ (𝑦 · 𝑧) ∈
(ℤ≥‘2))) |
| 13 | | breq2 4037 |
. . . . 5
⊢ (𝑥 = (𝑦 · 𝑧) → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ (𝑦 · 𝑧))) |
| 14 | 13 | rexbidv 2498 |
. . . 4
⊢ (𝑥 = (𝑦 · 𝑧) → (∃𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))) |
| 15 | 12, 14 | imbi12d 234 |
. . 3
⊢ (𝑥 = (𝑦 · 𝑧) → ((𝑥 ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ 𝑥) ↔ ((𝑦 · 𝑧) ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ (𝑦 · 𝑧)))) |
| 16 | | eleq1 2259 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑥 ∈ (ℤ≥‘2)
↔ 𝑁 ∈
(ℤ≥‘2))) |
| 17 | | breq2 4037 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝑁)) |
| 18 | 17 | rexbidv 2498 |
. . . 4
⊢ (𝑥 = 𝑁 → (∃𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑁)) |
| 19 | 16, 18 | imbi12d 234 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ 𝑥) ↔ (𝑁 ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ 𝑁))) |
| 20 | | 1m1e0 9059 |
. . . . 5
⊢ (1
− 1) = 0 |
| 21 | | uz2m1nn 9679 |
. . . . 5
⊢ (1 ∈
(ℤ≥‘2) → (1 − 1) ∈
ℕ) |
| 22 | 20, 21 | eqeltrrid 2284 |
. . . 4
⊢ (1 ∈
(ℤ≥‘2) → 0 ∈ ℕ) |
| 23 | | 0nnn 9017 |
. . . . 5
⊢ ¬ 0
∈ ℕ |
| 24 | 23 | pm2.21i 647 |
. . . 4
⊢ (0 ∈
ℕ → ∃𝑝
∈ ℙ 𝑝 ∥
𝑥) |
| 25 | 22, 24 | syl 14 |
. . 3
⊢ (1 ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑥) |
| 26 | | prmz 12279 |
. . . . . 6
⊢ (𝑥 ∈ ℙ → 𝑥 ∈
ℤ) |
| 27 | | iddvds 11969 |
. . . . . 6
⊢ (𝑥 ∈ ℤ → 𝑥 ∥ 𝑥) |
| 28 | 26, 27 | syl 14 |
. . . . 5
⊢ (𝑥 ∈ ℙ → 𝑥 ∥ 𝑥) |
| 29 | | breq1 4036 |
. . . . . 6
⊢ (𝑝 = 𝑥 → (𝑝 ∥ 𝑥 ↔ 𝑥 ∥ 𝑥)) |
| 30 | 29 | rspcev 2868 |
. . . . 5
⊢ ((𝑥 ∈ ℙ ∧ 𝑥 ∥ 𝑥) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑥) |
| 31 | 28, 30 | mpdan 421 |
. . . 4
⊢ (𝑥 ∈ ℙ →
∃𝑝 ∈ ℙ
𝑝 ∥ 𝑥) |
| 32 | 31 | a1d 22 |
. . 3
⊢ (𝑥 ∈ ℙ → (𝑥 ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑥)) |
| 33 | | simpl 109 |
. . . . . 6
⊢ ((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑦 ∈
(ℤ≥‘2)) |
| 34 | | eluzelz 9610 |
. . . . . . . . . 10
⊢ (𝑦 ∈
(ℤ≥‘2) → 𝑦 ∈ ℤ) |
| 35 | 34 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
∧ 𝑝 ∈ ℙ)
→ 𝑦 ∈
ℤ) |
| 36 | | eluzelz 9610 |
. . . . . . . . . 10
⊢ (𝑧 ∈
(ℤ≥‘2) → 𝑧 ∈ ℤ) |
| 37 | 36 | ad2antlr 489 |
. . . . . . . . 9
⊢ (((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
∧ 𝑝 ∈ ℙ)
→ 𝑧 ∈
ℤ) |
| 38 | | dvdsmul1 11978 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑦 ∥ (𝑦 · 𝑧)) |
| 39 | 35, 37, 38 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
∧ 𝑝 ∈ ℙ)
→ 𝑦 ∥ (𝑦 · 𝑧)) |
| 40 | | prmz 12279 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
| 41 | 40 | adantl 277 |
. . . . . . . . 9
⊢ (((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
∧ 𝑝 ∈ ℙ)
→ 𝑝 ∈
ℤ) |
| 42 | 35, 37 | zmulcld 9454 |
. . . . . . . . 9
⊢ (((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
∧ 𝑝 ∈ ℙ)
→ (𝑦 · 𝑧) ∈
ℤ) |
| 43 | | dvdstr 11993 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ (𝑦 · 𝑧) ∈ ℤ) → ((𝑝 ∥ 𝑦 ∧ 𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧))) |
| 44 | 41, 35, 42, 43 | syl3anc 1249 |
. . . . . . . 8
⊢ (((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
∧ 𝑝 ∈ ℙ)
→ ((𝑝 ∥ 𝑦 ∧ 𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧))) |
| 45 | 39, 44 | mpan2d 428 |
. . . . . . 7
⊢ (((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
∧ 𝑝 ∈ ℙ)
→ (𝑝 ∥ 𝑦 → 𝑝 ∥ (𝑦 · 𝑧))) |
| 46 | 45 | reximdva 2599 |
. . . . . 6
⊢ ((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
→ (∃𝑝 ∈
ℙ 𝑝 ∥ 𝑦 → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))) |
| 47 | 33, 46 | embantd 56 |
. . . . 5
⊢ ((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
→ ((𝑦 ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑦) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))) |
| 48 | 47 | a1dd 48 |
. . . 4
⊢ ((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
→ ((𝑦 ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑦) → ((𝑦 · 𝑧) ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ (𝑦 · 𝑧)))) |
| 49 | 48 | adantrd 279 |
. . 3
⊢ ((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
→ (((𝑦 ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑦) ∧ (𝑧 ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ 𝑧)) → ((𝑦 · 𝑧) ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ (𝑦 · 𝑧)))) |
| 50 | 3, 7, 11, 15, 19, 25, 32, 49 | prmind 12289 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑁 ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑁)) |
| 51 | 1, 50 | mpcom 36 |
1
⊢ (𝑁 ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑁) |