ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exprmfct GIF version

Theorem exprmfct 12333
Description: Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
exprmfct (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
Distinct variable group:   𝑁,𝑝

Proof of Theorem exprmfct
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9659 . 2 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 eleq1 2259 . . . 4 (𝑥 = 1 → (𝑥 ∈ (ℤ‘2) ↔ 1 ∈ (ℤ‘2)))
32imbi1d 231 . . 3 (𝑥 = 1 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (1 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥)))
4 eleq1 2259 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ (ℤ‘2) ↔ 𝑦 ∈ (ℤ‘2)))
5 breq2 4038 . . . . 5 (𝑥 = 𝑦 → (𝑝𝑥𝑝𝑦))
65rexbidv 2498 . . . 4 (𝑥 = 𝑦 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑦))
74, 6imbi12d 234 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦)))
8 eleq1 2259 . . . 4 (𝑥 = 𝑧 → (𝑥 ∈ (ℤ‘2) ↔ 𝑧 ∈ (ℤ‘2)))
9 breq2 4038 . . . . 5 (𝑥 = 𝑧 → (𝑝𝑥𝑝𝑧))
109rexbidv 2498 . . . 4 (𝑥 = 𝑧 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑧))
118, 10imbi12d 234 . . 3 (𝑥 = 𝑧 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑧 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑧)))
12 eleq1 2259 . . . 4 (𝑥 = (𝑦 · 𝑧) → (𝑥 ∈ (ℤ‘2) ↔ (𝑦 · 𝑧) ∈ (ℤ‘2)))
13 breq2 4038 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (𝑝𝑥𝑝 ∥ (𝑦 · 𝑧)))
1413rexbidv 2498 . . . 4 (𝑥 = (𝑦 · 𝑧) → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
1512, 14imbi12d 234 . . 3 (𝑥 = (𝑦 · 𝑧) → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
16 eleq1 2259 . . . 4 (𝑥 = 𝑁 → (𝑥 ∈ (ℤ‘2) ↔ 𝑁 ∈ (ℤ‘2)))
17 breq2 4038 . . . . 5 (𝑥 = 𝑁 → (𝑝𝑥𝑝𝑁))
1817rexbidv 2498 . . . 4 (𝑥 = 𝑁 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑁))
1916, 18imbi12d 234 . . 3 (𝑥 = 𝑁 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)))
20 1m1e0 9078 . . . . 5 (1 − 1) = 0
21 uz2m1nn 9698 . . . . 5 (1 ∈ (ℤ‘2) → (1 − 1) ∈ ℕ)
2220, 21eqeltrrid 2284 . . . 4 (1 ∈ (ℤ‘2) → 0 ∈ ℕ)
23 0nnn 9036 . . . . 5 ¬ 0 ∈ ℕ
2423pm2.21i 647 . . . 4 (0 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑝𝑥)
2522, 24syl 14 . . 3 (1 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥)
26 prmz 12306 . . . . . 6 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
27 iddvds 11988 . . . . . 6 (𝑥 ∈ ℤ → 𝑥𝑥)
2826, 27syl 14 . . . . 5 (𝑥 ∈ ℙ → 𝑥𝑥)
29 breq1 4037 . . . . . 6 (𝑝 = 𝑥 → (𝑝𝑥𝑥𝑥))
3029rspcev 2868 . . . . 5 ((𝑥 ∈ ℙ ∧ 𝑥𝑥) → ∃𝑝 ∈ ℙ 𝑝𝑥)
3128, 30mpdan 421 . . . 4 (𝑥 ∈ ℙ → ∃𝑝 ∈ ℙ 𝑝𝑥)
3231a1d 22 . . 3 (𝑥 ∈ ℙ → (𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥))
33 simpl 109 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑦 ∈ (ℤ‘2))
34 eluzelz 9629 . . . . . . . . . 10 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
3534ad2antrr 488 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℤ)
36 eluzelz 9629 . . . . . . . . . 10 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
3736ad2antlr 489 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑧 ∈ ℤ)
38 dvdsmul1 11997 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑦 ∥ (𝑦 · 𝑧))
3935, 37, 38syl2anc 411 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∥ (𝑦 · 𝑧))
40 prmz 12306 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
4140adantl 277 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
4235, 37zmulcld 9473 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑦 · 𝑧) ∈ ℤ)
43 dvdstr 12012 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ (𝑦 · 𝑧) ∈ ℤ) → ((𝑝𝑦𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧)))
4441, 35, 42, 43syl3anc 1249 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑦𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧)))
4539, 44mpan2d 428 . . . . . . 7 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑝𝑦𝑝 ∥ (𝑦 · 𝑧)))
4645reximdva 2599 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∃𝑝 ∈ ℙ 𝑝𝑦 → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
4733, 46embantd 56 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
4847a1dd 48 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) → ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
4948adantrd 279 . . 3 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) ∧ (𝑧 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑧)) → ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
503, 7, 11, 15, 19, 25, 32, 49prmind 12316 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁))
511, 50mpcom 36 1 (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476   class class class wbr 4034  cfv 5259  (class class class)co 5925  0cc0 7898  1c1 7899   · cmul 7903  cmin 8216  cn 9009  2c2 9060  cz 9345  cuz 9620  cdvds 11971  cprime 12302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-prm 12303
This theorem is referenced by:  prmdvdsfz  12334  isprm5lem  12336  rpexp  12348  pc2dvds  12526  oddprmdvds  12550  prmunb  12558  lgsne0  15365
  Copyright terms: Public domain W3C validator