| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3syld | GIF version | ||
| Description: Triple syllogism deduction. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 45 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 5 | 3, 4 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: xpfi 6993 fodjumkvlemres 7225 enmkvlem 7227 apreap 8614 msqge0 8643 cju 8988 facavg 10838 mulcn2 11477 coprm 12312 rpexp 12321 cnpnei 14455 lgseisenlem2 15312 ismkvnnlem 15696 |
| Copyright terms: Public domain | W3C validator |