ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  findcard2sd GIF version

Theorem findcard2sd 6950
Description: Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.)
Hypotheses
Ref Expression
findcard2sd.ch (𝑥 = ∅ → (𝜓𝜒))
findcard2sd.th (𝑥 = 𝑦 → (𝜓𝜃))
findcard2sd.ta (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))
findcard2sd.et (𝑥 = 𝐴 → (𝜓𝜂))
findcard2sd.z (𝜑𝜒)
findcard2sd.i (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))
findcard2sd.a (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
findcard2sd (𝜑𝜂)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝜓,𝑦,𝑧   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜂,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝜂(𝑦,𝑧)

Proof of Theorem findcard2sd
StepHypRef Expression
1 ssid 3200 . 2 𝐴𝐴
2 findcard2sd.a . . . 4 (𝜑𝐴 ∈ Fin)
32adantr 276 . . 3 ((𝜑𝐴𝐴) → 𝐴 ∈ Fin)
4 sseq1 3203 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
54anbi2d 464 . . . . 5 (𝑥 = ∅ → ((𝜑𝑥𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴)))
6 findcard2sd.ch . . . . 5 (𝑥 = ∅ → (𝜓𝜒))
75, 6imbi12d 234 . . . 4 (𝑥 = ∅ → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → 𝜒)))
8 sseq1 3203 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
98anbi2d 464 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
10 findcard2sd.th . . . . 5 (𝑥 = 𝑦 → (𝜓𝜃))
119, 10imbi12d 234 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑𝑦𝐴) → 𝜃)))
12 sseq1 3203 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
1312anbi2d 464 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑𝑥𝐴) ↔ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)))
14 findcard2sd.ta . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))
1513, 14imbi12d 234 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝜏)))
16 sseq1 3203 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
1716anbi2d 464 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝑥𝐴) ↔ (𝜑𝐴𝐴)))
18 findcard2sd.et . . . . 5 (𝑥 = 𝐴 → (𝜓𝜂))
1917, 18imbi12d 234 . . . 4 (𝑥 = 𝐴 → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑𝐴𝐴) → 𝜂)))
20 findcard2sd.z . . . . 5 (𝜑𝜒)
2120adantr 276 . . . 4 ((𝜑 ∧ ∅ ⊆ 𝐴) → 𝜒)
22 simprl 529 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝜑)
23 simprr 531 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
2423unssad 3337 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑦𝐴)
2522, 24jca 306 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝜑𝑦𝐴))
26 simpll 527 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑦 ∈ Fin)
27 id 19 . . . . . . . . . . 11 ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
28 vsnid 3651 . . . . . . . . . . . 12 𝑧 ∈ {𝑧}
29 elun2 3328 . . . . . . . . . . . 12 (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝑦 ∪ {𝑧}))
3028, 29mp1i 10 . . . . . . . . . . 11 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑧 ∈ (𝑦 ∪ {𝑧}))
3127, 30sseldd 3181 . . . . . . . . . 10 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑧𝐴)
3231ad2antll 491 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧𝐴)
33 simplr 528 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧𝑦)
3432, 33eldifd 3164 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ (𝐴𝑦))
35 findcard2sd.i . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))
3622, 26, 24, 34, 35syl22anc 1250 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝜃𝜏))
3725, 36embantd 56 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (((𝜑𝑦𝐴) → 𝜃) → 𝜏))
3837ex 115 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (((𝜑𝑦𝐴) → 𝜃) → 𝜏)))
3938com23 78 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((𝜑𝑦𝐴) → 𝜃) → ((𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝜏)))
407, 11, 15, 19, 21, 39findcard2s 6948 . . 3 (𝐴 ∈ Fin → ((𝜑𝐴𝐴) → 𝜂))
413, 40mpcom 36 . 2 ((𝜑𝐴𝐴) → 𝜂)
421, 41mpan2 425 1 (𝜑𝜂)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  cdif 3151  cun 3152  wss 3154  c0 3447  {csn 3619  Fincfn 6796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6589  df-en 6797  df-fin 6799
This theorem is referenced by:  fimax2gtri  6959  finexdc  6960  unfidisj  6980  undifdc  6982  ssfirab  6992  fnfi  6997  dcfi  7042  difinfinf  7162  hashunlem  10878  hashxp  10900  fsumconst  11600  fsumrelem  11617  fprodcl2lem  11751  fprodconst  11766  fprodap0  11767  fprodrec  11775  fprodap0f  11782  fprodle  11786  fprodmodd  11787  iuncld  14294  fsumcncntop  14746
  Copyright terms: Public domain W3C validator