![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldju2ndr | GIF version |
Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.) |
Ref | Expression |
---|---|
eldju2ndr | ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 7050 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | 1 | eleq2i 2254 | . . . 4 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
3 | elun 3288 | . . . 4 ⊢ (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵))) | |
4 | 2, 3 | bitri 184 | . . 3 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵))) |
5 | elxp6 6183 | . . . . 5 ⊢ (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = ⟨(1st ‘𝑋), (2nd ‘𝑋)⟩ ∧ ((1st ‘𝑋) ∈ {∅} ∧ (2nd ‘𝑋) ∈ 𝐴))) | |
6 | elsni 3622 | . . . . . . 7 ⊢ ((1st ‘𝑋) ∈ {∅} → (1st ‘𝑋) = ∅) | |
7 | eqneqall 2367 | . . . . . . 7 ⊢ ((1st ‘𝑋) = ∅ → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | |
8 | 6, 7 | syl 14 | . . . . . 6 ⊢ ((1st ‘𝑋) ∈ {∅} → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
9 | 8 | ad2antrl 490 | . . . . 5 ⊢ ((𝑋 = ⟨(1st ‘𝑋), (2nd ‘𝑋)⟩ ∧ ((1st ‘𝑋) ∈ {∅} ∧ (2nd ‘𝑋) ∈ 𝐴)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
10 | 5, 9 | sylbi 121 | . . . 4 ⊢ (𝑋 ∈ ({∅} × 𝐴) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
11 | elxp6 6183 | . . . . 5 ⊢ (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = ⟨(1st ‘𝑋), (2nd ‘𝑋)⟩ ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵))) | |
12 | simprr 531 | . . . . . 6 ⊢ ((𝑋 = ⟨(1st ‘𝑋), (2nd ‘𝑋)⟩ ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵)) → (2nd ‘𝑋) ∈ 𝐵) | |
13 | 12 | a1d 22 | . . . . 5 ⊢ ((𝑋 = ⟨(1st ‘𝑋), (2nd ‘𝑋)⟩ ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
14 | 11, 13 | sylbi 121 | . . . 4 ⊢ (𝑋 ∈ ({1o} × 𝐵) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
15 | 10, 14 | jaoi 717 | . . 3 ⊢ ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
16 | 4, 15 | sylbi 121 | . 2 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
17 | 16 | imp 124 | 1 ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 ∪ cun 3139 ∅c0 3434 {csn 3604 ⟨cop 3607 × cxp 4636 ‘cfv 5228 1st c1st 6152 2nd c2nd 6153 1oc1o 6423 ⊔ cdju 7049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-iota 5190 df-fun 5230 df-fv 5236 df-1st 6154 df-2nd 6155 df-dju 7050 |
This theorem is referenced by: updjudhf 7091 |
Copyright terms: Public domain | W3C validator |