Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldju2ndr | GIF version |
Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.) |
Ref | Expression |
---|---|
eldju2ndr | ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 7003 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | 1 | eleq2i 2233 | . . . 4 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
3 | elun 3263 | . . . 4 ⊢ (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵))) | |
4 | 2, 3 | bitri 183 | . . 3 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵))) |
5 | elxp6 6137 | . . . . 5 ⊢ (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {∅} ∧ (2nd ‘𝑋) ∈ 𝐴))) | |
6 | elsni 3594 | . . . . . . 7 ⊢ ((1st ‘𝑋) ∈ {∅} → (1st ‘𝑋) = ∅) | |
7 | eqneqall 2346 | . . . . . . 7 ⊢ ((1st ‘𝑋) = ∅ → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | |
8 | 6, 7 | syl 14 | . . . . . 6 ⊢ ((1st ‘𝑋) ∈ {∅} → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
9 | 8 | ad2antrl 482 | . . . . 5 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {∅} ∧ (2nd ‘𝑋) ∈ 𝐴)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
10 | 5, 9 | sylbi 120 | . . . 4 ⊢ (𝑋 ∈ ({∅} × 𝐴) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
11 | elxp6 6137 | . . . . 5 ⊢ (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵))) | |
12 | simprr 522 | . . . . . 6 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵)) → (2nd ‘𝑋) ∈ 𝐵) | |
13 | 12 | a1d 22 | . . . . 5 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
14 | 11, 13 | sylbi 120 | . . . 4 ⊢ (𝑋 ∈ ({1o} × 𝐵) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
15 | 10, 14 | jaoi 706 | . . 3 ⊢ ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
16 | 4, 15 | sylbi 120 | . 2 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
17 | 16 | imp 123 | 1 ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∪ cun 3114 ∅c0 3409 {csn 3576 〈cop 3579 × cxp 4602 ‘cfv 5188 1st c1st 6106 2nd c2nd 6107 1oc1o 6377 ⊔ cdju 7002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-1st 6108 df-2nd 6109 df-dju 7003 |
This theorem is referenced by: updjudhf 7044 |
Copyright terms: Public domain | W3C validator |