ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju2ndr GIF version

Theorem eldju2ndr 7236
Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndr ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) ≠ ∅) → (2nd𝑋) ∈ 𝐵)

Proof of Theorem eldju2ndr
StepHypRef Expression
1 df-dju 7201 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
21eleq2i 2296 . . . 4 (𝑋 ∈ (𝐴𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
3 elun 3345 . . . 4 (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
42, 3bitri 184 . . 3 (𝑋 ∈ (𝐴𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
5 elxp6 6313 . . . . 5 (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)))
6 elsni 3684 . . . . . . 7 ((1st𝑋) ∈ {∅} → (1st𝑋) = ∅)
7 eqneqall 2410 . . . . . . 7 ((1st𝑋) = ∅ → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
86, 7syl 14 . . . . . 6 ((1st𝑋) ∈ {∅} → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
98ad2antrl 490 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
105, 9sylbi 121 . . . 4 (𝑋 ∈ ({∅} × 𝐴) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
11 elxp6 6313 . . . . 5 (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)))
12 simprr 531 . . . . . 6 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)) → (2nd𝑋) ∈ 𝐵)
1312a1d 22 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1411, 13sylbi 121 . . . 4 (𝑋 ∈ ({1o} × 𝐵) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1510, 14jaoi 721 . . 3 ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
164, 15sylbi 121 . 2 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1716imp 124 1 ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) ≠ ∅) → (2nd𝑋) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  wne 2400  cun 3195  c0 3491  {csn 3666  cop 3669   × cxp 4716  cfv 5317  1st c1st 6282  2nd c2nd 6283  1oc1o 6553  cdju 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fv 5325  df-1st 6284  df-2nd 6285  df-dju 7201
This theorem is referenced by:  updjudhf  7242
  Copyright terms: Public domain W3C validator