ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju2ndr GIF version

Theorem eldju2ndr 7174
Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndr ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) ≠ ∅) → (2nd𝑋) ∈ 𝐵)

Proof of Theorem eldju2ndr
StepHypRef Expression
1 df-dju 7139 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
21eleq2i 2271 . . . 4 (𝑋 ∈ (𝐴𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
3 elun 3313 . . . 4 (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
42, 3bitri 184 . . 3 (𝑋 ∈ (𝐴𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
5 elxp6 6254 . . . . 5 (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)))
6 elsni 3650 . . . . . . 7 ((1st𝑋) ∈ {∅} → (1st𝑋) = ∅)
7 eqneqall 2385 . . . . . . 7 ((1st𝑋) = ∅ → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
86, 7syl 14 . . . . . 6 ((1st𝑋) ∈ {∅} → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
98ad2antrl 490 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
105, 9sylbi 121 . . . 4 (𝑋 ∈ ({∅} × 𝐴) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
11 elxp6 6254 . . . . 5 (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)))
12 simprr 531 . . . . . 6 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)) → (2nd𝑋) ∈ 𝐵)
1312a1d 22 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1411, 13sylbi 121 . . . 4 (𝑋 ∈ ({1o} × 𝐵) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1510, 14jaoi 717 . . 3 ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
164, 15sylbi 121 . 2 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1716imp 124 1 ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) ≠ ∅) → (2nd𝑋) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1372  wcel 2175  wne 2375  cun 3163  c0 3459  {csn 3632  cop 3635   × cxp 4672  cfv 5270  1st c1st 6223  2nd c2nd 6224  1oc1o 6494  cdju 7138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fv 5278  df-1st 6225  df-2nd 6226  df-dju 7139
This theorem is referenced by:  updjudhf  7180
  Copyright terms: Public domain W3C validator