| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eldju2ndr | GIF version | ||
| Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| eldju2ndr | ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-dju 7104 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 2 | 1 | eleq2i 2263 | . . . 4 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | 
| 3 | elun 3304 | . . . 4 ⊢ (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵))) | |
| 4 | 2, 3 | bitri 184 | . . 3 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵))) | 
| 5 | elxp6 6227 | . . . . 5 ⊢ (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {∅} ∧ (2nd ‘𝑋) ∈ 𝐴))) | |
| 6 | elsni 3640 | . . . . . . 7 ⊢ ((1st ‘𝑋) ∈ {∅} → (1st ‘𝑋) = ∅) | |
| 7 | eqneqall 2377 | . . . . . . 7 ⊢ ((1st ‘𝑋) = ∅ → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | |
| 8 | 6, 7 | syl 14 | . . . . . 6 ⊢ ((1st ‘𝑋) ∈ {∅} → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | 
| 9 | 8 | ad2antrl 490 | . . . . 5 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {∅} ∧ (2nd ‘𝑋) ∈ 𝐴)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | 
| 10 | 5, 9 | sylbi 121 | . . . 4 ⊢ (𝑋 ∈ ({∅} × 𝐴) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | 
| 11 | elxp6 6227 | . . . . 5 ⊢ (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵))) | |
| 12 | simprr 531 | . . . . . 6 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵)) → (2nd ‘𝑋) ∈ 𝐵) | |
| 13 | 12 | a1d 22 | . . . . 5 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | 
| 14 | 11, 13 | sylbi 121 | . . . 4 ⊢ (𝑋 ∈ ({1o} × 𝐵) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | 
| 15 | 10, 14 | jaoi 717 | . . 3 ⊢ ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | 
| 16 | 4, 15 | sylbi 121 | . 2 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | 
| 17 | 16 | imp 124 | 1 ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∪ cun 3155 ∅c0 3450 {csn 3622 〈cop 3625 × cxp 4661 ‘cfv 5258 1st c1st 6196 2nd c2nd 6197 1oc1o 6467 ⊔ cdju 7103 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-1st 6198 df-2nd 6199 df-dju 7104 | 
| This theorem is referenced by: updjudhf 7145 | 
| Copyright terms: Public domain | W3C validator |