ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju2ndr GIF version

Theorem eldju2ndr 7038
Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndr ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) ≠ ∅) → (2nd𝑋) ∈ 𝐵)

Proof of Theorem eldju2ndr
StepHypRef Expression
1 df-dju 7003 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
21eleq2i 2233 . . . 4 (𝑋 ∈ (𝐴𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
3 elun 3263 . . . 4 (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
42, 3bitri 183 . . 3 (𝑋 ∈ (𝐴𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
5 elxp6 6137 . . . . 5 (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)))
6 elsni 3594 . . . . . . 7 ((1st𝑋) ∈ {∅} → (1st𝑋) = ∅)
7 eqneqall 2346 . . . . . . 7 ((1st𝑋) = ∅ → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
86, 7syl 14 . . . . . 6 ((1st𝑋) ∈ {∅} → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
98ad2antrl 482 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
105, 9sylbi 120 . . . 4 (𝑋 ∈ ({∅} × 𝐴) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
11 elxp6 6137 . . . . 5 (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)))
12 simprr 522 . . . . . 6 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)) → (2nd𝑋) ∈ 𝐵)
1312a1d 22 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1411, 13sylbi 120 . . . 4 (𝑋 ∈ ({1o} × 𝐵) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1510, 14jaoi 706 . . 3 ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
164, 15sylbi 120 . 2 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1716imp 123 1 ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) ≠ ∅) → (2nd𝑋) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  wne 2336  cun 3114  c0 3409  {csn 3576  cop 3579   × cxp 4602  cfv 5188  1st c1st 6106  2nd c2nd 6107  1oc1o 6377  cdju 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108  df-2nd 6109  df-dju 7003
This theorem is referenced by:  updjudhf  7044
  Copyright terms: Public domain W3C validator