ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju2ndr GIF version

Theorem eldju2ndr 6958
Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndr ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) ≠ ∅) → (2nd𝑋) ∈ 𝐵)

Proof of Theorem eldju2ndr
StepHypRef Expression
1 df-dju 6923 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
21eleq2i 2206 . . . 4 (𝑋 ∈ (𝐴𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
3 elun 3217 . . . 4 (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
42, 3bitri 183 . . 3 (𝑋 ∈ (𝐴𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
5 elxp6 6067 . . . . 5 (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)))
6 elsni 3545 . . . . . . 7 ((1st𝑋) ∈ {∅} → (1st𝑋) = ∅)
7 eqneqall 2318 . . . . . . 7 ((1st𝑋) = ∅ → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
86, 7syl 14 . . . . . 6 ((1st𝑋) ∈ {∅} → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
98ad2antrl 481 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
105, 9sylbi 120 . . . 4 (𝑋 ∈ ({∅} × 𝐴) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
11 elxp6 6067 . . . . 5 (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)))
12 simprr 521 . . . . . 6 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)) → (2nd𝑋) ∈ 𝐵)
1312a1d 22 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1411, 13sylbi 120 . . . 4 (𝑋 ∈ ({1o} × 𝐵) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1510, 14jaoi 705 . . 3 ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
164, 15sylbi 120 . 2 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐵))
1716imp 123 1 ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) ≠ ∅) → (2nd𝑋) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 697   = wceq 1331  wcel 1480  wne 2308  cun 3069  c0 3363  {csn 3527  cop 3530   × cxp 4537  cfv 5123  1st c1st 6036  2nd c2nd 6037  1oc1o 6306  cdju 6922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fv 5131  df-1st 6038  df-2nd 6039  df-dju 6923
This theorem is referenced by:  updjudhf  6964
  Copyright terms: Public domain W3C validator