| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prm2orodd | GIF version | ||
| Description: A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021.) |
| Ref | Expression |
|---|---|
| prm2orodd | ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9211 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 2 | dvdsprime 12494 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 2 ∈ ℕ) → (2 ∥ 𝑃 ↔ (2 = 𝑃 ∨ 2 = 1))) | |
| 3 | 1, 2 | mpan2 425 | . . . 4 ⊢ (𝑃 ∈ ℙ → (2 ∥ 𝑃 ↔ (2 = 𝑃 ∨ 2 = 1))) |
| 4 | eqcom 2208 | . . . . . 6 ⊢ (2 = 𝑃 ↔ 𝑃 = 2) | |
| 5 | 4 | biimpi 120 | . . . . 5 ⊢ (2 = 𝑃 → 𝑃 = 2) |
| 6 | 1ne2 9256 | . . . . . 6 ⊢ 1 ≠ 2 | |
| 7 | necom 2461 | . . . . . . 7 ⊢ (1 ≠ 2 ↔ 2 ≠ 1) | |
| 8 | eqneqall 2387 | . . . . . . . 8 ⊢ (2 = 1 → (2 ≠ 1 → 𝑃 = 2)) | |
| 9 | 8 | com12 30 | . . . . . . 7 ⊢ (2 ≠ 1 → (2 = 1 → 𝑃 = 2)) |
| 10 | 7, 9 | sylbi 121 | . . . . . 6 ⊢ (1 ≠ 2 → (2 = 1 → 𝑃 = 2)) |
| 11 | 6, 10 | ax-mp 5 | . . . . 5 ⊢ (2 = 1 → 𝑃 = 2) |
| 12 | 5, 11 | jaoi 718 | . . . 4 ⊢ ((2 = 𝑃 ∨ 2 = 1) → 𝑃 = 2) |
| 13 | 3, 12 | biimtrdi 163 | . . 3 ⊢ (𝑃 ∈ ℙ → (2 ∥ 𝑃 → 𝑃 = 2)) |
| 14 | 13 | con3d 632 | . 2 ⊢ (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → ¬ 2 ∥ 𝑃)) |
| 15 | prmz 12483 | . . 3 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 16 | 2z 9413 | . . . 4 ⊢ 2 ∈ ℤ | |
| 17 | zdceq 9461 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑃 = 2) | |
| 18 | 16, 17 | mpan2 425 | . . 3 ⊢ (𝑃 ∈ ℤ → DECID 𝑃 = 2) |
| 19 | dfordc 894 | . . 3 ⊢ (DECID 𝑃 = 2 → ((𝑃 = 2 ∨ ¬ 2 ∥ 𝑃) ↔ (¬ 𝑃 = 2 → ¬ 2 ∥ 𝑃))) | |
| 20 | 15, 18, 19 | 3syl 17 | . 2 ⊢ (𝑃 ∈ ℙ → ((𝑃 = 2 ∨ ¬ 2 ∥ 𝑃) ↔ (¬ 𝑃 = 2 → ¬ 2 ∥ 𝑃))) |
| 21 | 14, 20 | mpbird 167 | 1 ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 class class class wbr 4048 1c1 7939 ℕcn 9049 2c2 9100 ℤcz 9385 ∥ cdvds 12148 ℙcprime 12479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-1o 6512 df-2o 6513 df-er 6630 df-en 6838 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-seqfrec 10606 df-exp 10697 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-dvds 12149 df-prm 12480 |
| This theorem is referenced by: lgsval 15531 lgsfvalg 15532 2lgs 15631 |
| Copyright terms: Public domain | W3C validator |