ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prm2orodd GIF version

Theorem prm2orodd 12003
Description: A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
prm2orodd (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃))

Proof of Theorem prm2orodd
StepHypRef Expression
1 2nn 8994 . . . . 5 2 ∈ ℕ
2 dvdsprime 11999 . . . . 5 ((𝑃 ∈ ℙ ∧ 2 ∈ ℕ) → (2 ∥ 𝑃 ↔ (2 = 𝑃 ∨ 2 = 1)))
31, 2mpan2 422 . . . 4 (𝑃 ∈ ℙ → (2 ∥ 𝑃 ↔ (2 = 𝑃 ∨ 2 = 1)))
4 eqcom 2159 . . . . . 6 (2 = 𝑃𝑃 = 2)
54biimpi 119 . . . . 5 (2 = 𝑃𝑃 = 2)
6 1ne2 9039 . . . . . 6 1 ≠ 2
7 necom 2411 . . . . . . 7 (1 ≠ 2 ↔ 2 ≠ 1)
8 eqneqall 2337 . . . . . . . 8 (2 = 1 → (2 ≠ 1 → 𝑃 = 2))
98com12 30 . . . . . . 7 (2 ≠ 1 → (2 = 1 → 𝑃 = 2))
107, 9sylbi 120 . . . . . 6 (1 ≠ 2 → (2 = 1 → 𝑃 = 2))
116, 10ax-mp 5 . . . . 5 (2 = 1 → 𝑃 = 2)
125, 11jaoi 706 . . . 4 ((2 = 𝑃 ∨ 2 = 1) → 𝑃 = 2)
133, 12syl6bi 162 . . 3 (𝑃 ∈ ℙ → (2 ∥ 𝑃𝑃 = 2))
1413con3d 621 . 2 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → ¬ 2 ∥ 𝑃))
15 prmz 11988 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
16 2z 9195 . . . 4 2 ∈ ℤ
17 zdceq 9239 . . . 4 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑃 = 2)
1816, 17mpan2 422 . . 3 (𝑃 ∈ ℤ → DECID 𝑃 = 2)
19 dfordc 878 . . 3 (DECID 𝑃 = 2 → ((𝑃 = 2 ∨ ¬ 2 ∥ 𝑃) ↔ (¬ 𝑃 = 2 → ¬ 2 ∥ 𝑃)))
2015, 18, 193syl 17 . 2 (𝑃 ∈ ℙ → ((𝑃 = 2 ∨ ¬ 2 ∥ 𝑃) ↔ (¬ 𝑃 = 2 → ¬ 2 ∥ 𝑃)))
2114, 20mpbird 166 1 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 698  DECID wdc 820   = wceq 1335  wcel 2128  wne 2327   class class class wbr 3965  1c1 7733  cn 8833  2c2 8884  cz 9167  cdvds 11683  cprime 11984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-frec 6338  df-1o 6363  df-2o 6364  df-er 6480  df-en 6686  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-n0 9091  df-z 9168  df-uz 9440  df-q 9529  df-rp 9561  df-seqfrec 10345  df-exp 10419  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-dvds 11684  df-prm 11985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator