ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfzo0difsn GIF version

Theorem modfzo0difsn 10553
Description: For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modfzo0difsn ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
Distinct variable groups:   𝑖,𝐽   𝑖,𝐾   𝑖,𝑁

Proof of Theorem modfzo0difsn
StepHypRef Expression
1 eldifi 3297 . . . 4 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ (0..^𝑁))
2 elfzoelz 10282 . . . 4 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℤ)
31, 2syl 14 . . 3 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℤ)
4 elfzoelz 10282 . . 3 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
5 zdcle 9462 . . . 4 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → DECID 𝐾𝐽)
6 exmiddc 838 . . . 4 (DECID 𝐾𝐽 → (𝐾𝐽 ∨ ¬ 𝐾𝐽))
75, 6syl 14 . . 3 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾𝐽 ∨ ¬ 𝐾𝐽))
83, 4, 7syl2anr 290 . 2 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 ∨ ¬ 𝐾𝐽))
9 zleloe 9432 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾𝐽 ↔ (𝐾 < 𝐽𝐾 = 𝐽)))
103, 4, 9syl2anr 290 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 ↔ (𝐾 < 𝐽𝐾 = 𝐽)))
11 elfzo0 10319 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
12 elfzo0 10319 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
13 nn0cn 9318 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
1413adantr 276 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℂ)
1514adantl 277 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐾 ∈ ℂ)
16 nn0cn 9318 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
17163ad2ant1 1021 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
1817adantr 276 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐽 ∈ ℂ)
19 nncn 9057 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
20193ad2ant2 1022 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
2120adantr 276 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℂ)
2215, 18, 21subadd23d 8418 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) + 𝑁) = (𝐾 + (𝑁𝐽)))
23 simpl 109 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
24 nn0z 9405 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
25 nnz 9404 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
26 znnsub 9437 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 < 𝑁 ↔ (𝑁𝐽) ∈ ℕ))
2724, 25, 26syl2an 289 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ (𝑁𝐽) ∈ ℕ))
2827biimp3a 1358 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁𝐽) ∈ ℕ)
29 nn0nnaddcl 9339 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0 ∧ (𝑁𝐽) ∈ ℕ) → (𝐾 + (𝑁𝐽)) ∈ ℕ)
3023, 28, 29syl2anr 290 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾 + (𝑁𝐽)) ∈ ℕ)
3122, 30eqeltrd 2283 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) + 𝑁) ∈ ℕ)
3231adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) ∈ ℕ)
33 simp2 1001 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℕ)
3433adantr 276 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℕ)
3534adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → 𝑁 ∈ ℕ)
36 nn0re 9317 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
3736adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℝ)
3837adantl 277 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐾 ∈ ℝ)
39 nn0re 9317 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 ∈ ℕ0𝐽 ∈ ℝ)
40393ad2ant1 1021 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℝ)
4140adantr 276 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐽 ∈ ℝ)
4238, 41sublt0d 8656 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) < 0 ↔ 𝐾 < 𝐽))
4342bicomd 141 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾 < 𝐽 ↔ (𝐾𝐽) < 0))
4443biimpa 296 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → (𝐾𝐽) < 0)
45 resubcl 8349 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
4637, 40, 45syl2anr 290 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾𝐽) ∈ ℝ)
47 nnre 9056 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
48473ad2ant2 1022 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
4948adantr 276 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℝ)
5046, 49jca 306 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ))
5150adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ))
52 ltaddnegr 8511 . . . . . . . . . . . . . . . . . . . 20 (((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝐽) < 0 ↔ ((𝐾𝐽) + 𝑁) < 𝑁))
5351, 52syl 14 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) < 0 ↔ ((𝐾𝐽) + 𝑁) < 𝑁))
5444, 53mpbid 147 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) < 𝑁)
55 elfzo1 10327 . . . . . . . . . . . . . . . . . 18 (((𝐾𝐽) + 𝑁) ∈ (1..^𝑁) ↔ (((𝐾𝐽) + 𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ((𝐾𝐽) + 𝑁) < 𝑁))
5632, 35, 54, 55syl3anbrc 1184 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))
5756exp31 364 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
5812, 57sylbi 121 . . . . . . . . . . . . . . 15 (𝐽 ∈ (0..^𝑁) → ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
5958com12 30 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
60593adant2 1019 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
6111, 60sylbi 121 . . . . . . . . . . . 12 (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
621, 61syl 14 . . . . . . . . . . 11 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
6362impcom 125 . . . . . . . . . 10 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁)))
6463impcom 125 . . . . . . . . 9 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))
65 oveq1 5961 . . . . . . . . . . . 12 (𝑖 = ((𝐾𝐽) + 𝑁) → (𝑖 + 𝐽) = (((𝐾𝐽) + 𝑁) + 𝐽))
662zcnd 9509 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℂ)
6766adantr 276 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐾 ∈ ℂ)
6816adantr 276 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝐽 ∈ ℂ)
6968adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐽 ∈ ℂ)
7019adantl 277 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
7170adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
7267, 69, 713jca 1180 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7372ex 115 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
741, 73syl 14 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7574com12 30 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
76753adant3 1020 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7712, 76sylbi 121 . . . . . . . . . . . . . . 15 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7877imp 124 . . . . . . . . . . . . . 14 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7978adantl 277 . . . . . . . . . . . . 13 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
80 nppcan 8307 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝐾𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁))
8179, 80syl 14 . . . . . . . . . . . 12 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (((𝐾𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁))
8265, 81sylan9eqr 2261 . . . . . . . . . . 11 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → (𝑖 + 𝐽) = (𝐾 + 𝑁))
8382oveq1d 5969 . . . . . . . . . 10 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → ((𝑖 + 𝐽) mod 𝑁) = ((𝐾 + 𝑁) mod 𝑁))
8483eqeq2d 2218 . . . . . . . . 9 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = ((𝐾 + 𝑁) mod 𝑁)))
8511biimpi 120 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
8685a1d 22 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)))
871, 86syl 14 . . . . . . . . . . . 12 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)))
8887impcom 125 . . . . . . . . . . 11 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
8988adantl 277 . . . . . . . . . 10 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
90 addmodidr 10531 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝐾 + 𝑁) mod 𝑁) = 𝐾)
9190eqcomd 2212 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁))
9289, 91syl 14 . . . . . . . . 9 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁))
9364, 84, 92rspcedvd 2885 . . . . . . . 8 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
9493ex 115 . . . . . . 7 (𝐾 < 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
95 eldifsn 3763 . . . . . . . . . 10 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾𝐽))
96 eqneqall 2387 . . . . . . . . . . . 12 (𝐾 = 𝐽 → (𝐾𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9796com12 30 . . . . . . . . . . 11 (𝐾𝐽 → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9897adantl 277 . . . . . . . . . 10 ((𝐾 ∈ (0..^𝑁) ∧ 𝐾𝐽) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9995, 98sylbi 121 . . . . . . . . 9 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
10099adantl 277 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
101100com12 30 . . . . . . 7 (𝐾 = 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
10294, 101jaoi 718 . . . . . 6 ((𝐾 < 𝐽𝐾 = 𝐽) → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
103102com12 30 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾 < 𝐽𝐾 = 𝐽) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
10410, 103sylbid 150 . . . 4 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
105104com12 30 . . 3 (𝐾𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
106 zltnle 9431 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 < 𝐾 ↔ ¬ 𝐾𝐽))
1074, 3, 106syl2an 289 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 ↔ ¬ 𝐾𝐽))
108107bicomd 141 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾𝐽𝐽 < 𝐾))
109243ad2ant1 1021 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℤ)
110 nn0z 9405 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
111110adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℤ)
112 znnsub 9437 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 < 𝐾 ↔ (𝐾𝐽) ∈ ℕ))
113109, 111, 112syl2anr 290 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 < 𝐾 ↔ (𝐾𝐽) ∈ ℕ))
114113biimpa 296 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾𝐽) ∈ ℕ)
11533adantl 277 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℕ)
116115adantr 276 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → 𝑁 ∈ ℕ)
117 nn0ge0 9333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ ℕ0 → 0 ≤ 𝐽)
1181173ad2ant1 1021 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 ≤ 𝐽)
119118adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 ≤ 𝐽)
120 subge02 8564 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (0 ≤ 𝐽 ↔ (𝐾𝐽) ≤ 𝐾))
12136, 40, 120syl2an 289 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐽 ↔ (𝐾𝐽) ≤ 𝐾))
122119, 121mpbid 147 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾𝐽) ≤ 𝐾)
12340adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℝ)
12436adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐾 ∈ ℝ)
12548adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
126123, 124, 1253jca 1180 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
12745ancoms 268 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
1281273adant3 1020 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
129 simp2 1001 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝐾 ∈ ℝ)
130 simp3 1002 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ)
131128, 129, 1303jca 1180 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
132126, 131syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
133 lelttr 8174 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾𝐽) ≤ 𝐾𝐾 < 𝑁) → (𝐾𝐽) < 𝑁))
134132, 133syl 14 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (((𝐾𝐽) ≤ 𝐾𝐾 < 𝑁) → (𝐾𝐽) < 𝑁))
135122, 134mpand 429 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾 < 𝑁 → (𝐾𝐽) < 𝑁))
136135impancom 260 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾𝐽) < 𝑁))
137136imp 124 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾𝐽) < 𝑁)
138137adantr 276 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾𝐽) < 𝑁)
139114, 116, 1383jca 1180 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
140139exp31 364 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1411403adant2 1019 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
14211, 141sylbi 121 . . . . . . . . . . . 12 (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1431, 142syl 14 . . . . . . . . . . 11 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
144143com12 30 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
14512, 144sylbi 121 . . . . . . . . 9 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
146145imp 124 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁)))
147108, 146sylbid 150 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾𝐽 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁)))
148147impcom 125 . . . . . 6 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
149 elfzo1 10327 . . . . . 6 ((𝐾𝐽) ∈ (1..^𝑁) ↔ ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
150148, 149sylibr 134 . . . . 5 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾𝐽) ∈ (1..^𝑁))
151 oveq1 5961 . . . . . . . 8 (𝑖 = (𝐾𝐽) → (𝑖 + 𝐽) = ((𝐾𝐽) + 𝐽))
1521, 66syl 14 . . . . . . . . . 10 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℂ)
1534zcnd 9509 . . . . . . . . . 10 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
154 npcan 8294 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ) → ((𝐾𝐽) + 𝐽) = 𝐾)
155152, 153, 154syl2anr 290 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾𝐽) + 𝐽) = 𝐾)
156155adantl 277 . . . . . . . 8 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) + 𝐽) = 𝐾)
157151, 156sylan9eqr 2261 . . . . . . 7 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → (𝑖 + 𝐽) = 𝐾)
158157oveq1d 5969 . . . . . 6 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → ((𝑖 + 𝐽) mod 𝑁) = (𝐾 mod 𝑁))
159158eqeq2d 2218 . . . . 5 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = (𝐾 mod 𝑁)))
160 zmodidfzoimp 10512 . . . . . . . . 9 (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾)
1611, 160syl 14 . . . . . . . 8 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 mod 𝑁) = 𝐾)
162161adantl 277 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 mod 𝑁) = 𝐾)
163162adantl 277 . . . . . 6 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 mod 𝑁) = 𝐾)
164163eqcomd 2212 . . . . 5 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = (𝐾 mod 𝑁))
165150, 159, 164rspcedvd 2885 . . . 4 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
166165ex 115 . . 3 𝐾𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
167105, 166jaoi 718 . 2 ((𝐾𝐽 ∨ ¬ 𝐾𝐽) → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
1688, 167mpcom 36 1 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  wne 2377  wrex 2486  cdif 3165  {csn 3635   class class class wbr 4048  (class class class)co 5954  cc 7936  cr 7937  0cc0 7938  1c1 7939   + caddc 7941   < clt 8120  cle 8121  cmin 8256  cn 9049  0cn0 9308  cz 9385  ..^cfzo 10277   mod cmo 10480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-po 4348  df-iso 4349  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-ico 10029  df-fz 10144  df-fzo 10278  df-fl 10426  df-mod 10481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator