Proof of Theorem prm23lt5
| Step | Hyp | Ref
 | Expression | 
| 1 |   | prmnn 12278 | 
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) | 
| 2 | 1 | nnnn0d 9302 | 
. . . 4
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ0) | 
| 3 | 2 | adantr 276 | 
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈
ℕ0) | 
| 4 |   | 4nn0 9268 | 
. . . 4
⊢ 4 ∈
ℕ0 | 
| 5 | 4 | a1i 9 | 
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 4 ∈
ℕ0) | 
| 6 |   | df-5 9052 | 
. . . . . 6
⊢ 5 = (4 +
1) | 
| 7 | 6 | breq2i 4041 | 
. . . . 5
⊢ (𝑃 < 5 ↔ 𝑃 < (4 + 1)) | 
| 8 |   | prmz 12279 | 
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) | 
| 9 |   | 4z 9356 | 
. . . . . . 7
⊢ 4 ∈
ℤ | 
| 10 |   | zleltp1 9381 | 
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ 4 ∈
ℤ) → (𝑃 ≤ 4
↔ 𝑃 < (4 +
1))) | 
| 11 | 8, 9, 10 | sylancl 413 | 
. . . . . 6
⊢ (𝑃 ∈ ℙ → (𝑃 ≤ 4 ↔ 𝑃 < (4 + 1))) | 
| 12 | 11 | biimprd 158 | 
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑃 < (4 + 1) → 𝑃 ≤ 4)) | 
| 13 | 7, 12 | biimtrid 152 | 
. . . 4
⊢ (𝑃 ∈ ℙ → (𝑃 < 5 → 𝑃 ≤ 4)) | 
| 14 | 13 | imp 124 | 
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ≤ 4) | 
| 15 |   | elfz2nn0 10187 | 
. . 3
⊢ (𝑃 ∈ (0...4) ↔ (𝑃 ∈ ℕ0
∧ 4 ∈ ℕ0 ∧ 𝑃 ≤ 4)) | 
| 16 | 3, 5, 14, 15 | syl3anbrc 1183 | 
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → 𝑃 ∈
(0...4)) | 
| 17 |   | fz0to4untppr 10199 | 
. . . 4
⊢ (0...4) =
({0, 1, 2} ∪ {3, 4}) | 
| 18 | 17 | eleq2i 2263 | 
. . 3
⊢ (𝑃 ∈ (0...4) ↔ 𝑃 ∈ ({0, 1, 2} ∪ {3,
4})) | 
| 19 |   | elun 3304 | 
. . . . . 6
⊢ (𝑃 ∈ ({0, 1, 2} ∪ {3, 4})
↔ (𝑃 ∈ {0, 1, 2}
∨ 𝑃 ∈ {3,
4})) | 
| 20 |   | eltpi 3669 | 
. . . . . . . 8
⊢ (𝑃 ∈ {0, 1, 2} → (𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2)) | 
| 21 |   | nnne0 9018 | 
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℕ → 𝑃 ≠ 0) | 
| 22 |   | eqneqall 2377 | 
. . . . . . . . . . . 12
⊢ (𝑃 = 0 → (𝑃 ≠ 0 → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 23 | 22 | com12 30 | 
. . . . . . . . . . 11
⊢ (𝑃 ≠ 0 → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 24 | 1, 21, 23 | 3syl 17 | 
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → (𝑃 = 0 → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 25 | 24 | com12 30 | 
. . . . . . . . 9
⊢ (𝑃 = 0 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 26 |   | eleq1 2259 | 
. . . . . . . . . 10
⊢ (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈
ℙ)) | 
| 27 |   | 1nprm 12282 | 
. . . . . . . . . . 11
⊢  ¬ 1
∈ ℙ | 
| 28 | 27 | pm2.21i 647 | 
. . . . . . . . . 10
⊢ (1 ∈
ℙ → (𝑃 = 2 ∨
𝑃 = 3)) | 
| 29 | 26, 28 | biimtrdi 163 | 
. . . . . . . . 9
⊢ (𝑃 = 1 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 30 |   | orc 713 | 
. . . . . . . . . 10
⊢ (𝑃 = 2 → (𝑃 = 2 ∨ 𝑃 = 3)) | 
| 31 | 30 | a1d 22 | 
. . . . . . . . 9
⊢ (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 32 | 25, 29, 31 | 3jaoi 1314 | 
. . . . . . . 8
⊢ ((𝑃 = 0 ∨ 𝑃 = 1 ∨ 𝑃 = 2) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 33 | 20, 32 | syl 14 | 
. . . . . . 7
⊢ (𝑃 ∈ {0, 1, 2} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 34 |   | elpri 3645 | 
. . . . . . . 8
⊢ (𝑃 ∈ {3, 4} → (𝑃 = 3 ∨ 𝑃 = 4)) | 
| 35 |   | olc 712 | 
. . . . . . . . . 10
⊢ (𝑃 = 3 → (𝑃 = 2 ∨ 𝑃 = 3)) | 
| 36 | 35 | a1d 22 | 
. . . . . . . . 9
⊢ (𝑃 = 3 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 37 |   | eleq1 2259 | 
. . . . . . . . . 10
⊢ (𝑃 = 4 → (𝑃 ∈ ℙ ↔ 4 ∈
ℙ)) | 
| 38 |   | 4nprm 12297 | 
. . . . . . . . . . 11
⊢  ¬ 4
∈ ℙ | 
| 39 | 38 | pm2.21i 647 | 
. . . . . . . . . 10
⊢ (4 ∈
ℙ → (𝑃 = 2 ∨
𝑃 = 3)) | 
| 40 | 37, 39 | biimtrdi 163 | 
. . . . . . . . 9
⊢ (𝑃 = 4 → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 41 | 36, 40 | jaoi 717 | 
. . . . . . . 8
⊢ ((𝑃 = 3 ∨ 𝑃 = 4) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 42 | 34, 41 | syl 14 | 
. . . . . . 7
⊢ (𝑃 ∈ {3, 4} → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 43 | 33, 42 | jaoi 717 | 
. . . . . 6
⊢ ((𝑃 ∈ {0, 1, 2} ∨ 𝑃 ∈ {3, 4}) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 44 | 19, 43 | sylbi 121 | 
. . . . 5
⊢ (𝑃 ∈ ({0, 1, 2} ∪ {3, 4})
→ (𝑃 ∈ ℙ
→ (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 45 | 44 | com12 30 | 
. . . 4
⊢ (𝑃 ∈ ℙ → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4})
→ (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 46 | 45 | adantr 276 | 
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ ({0, 1, 2} ∪ {3, 4})
→ (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 47 | 18, 46 | biimtrid 152 | 
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 ∈ (0...4) → (𝑃 = 2 ∨ 𝑃 = 3))) | 
| 48 | 16, 47 | mpd 13 | 
1
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3)) |