ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nno GIF version

Theorem nno 12071
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nno ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)

Proof of Theorem nno
StepHypRef Expression
1 eluz2b3 9678 . . 3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
2 nnnn0 9256 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 nn0o1gt2 12070 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
42, 3sylan 283 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
5 eqneqall 2377 . . . . . . 7 (𝑁 = 1 → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
65a1d 22 . . . . . 6 (𝑁 = 1 → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
7 nn0z 9346 . . . . . . . . . . . 12 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
8 peano2zm 9364 . . . . . . . . . . . 12 (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
97, 8syl 14 . . . . . . . . . . 11 (((𝑁 + 1) / 2) ∈ ℕ0 → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
109ad2antlr 489 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
11 2cn 9061 . . . . . . . . . . . . . . 15 2 ∈ ℂ
1211mullidi 8029 . . . . . . . . . . . . . 14 (1 · 2) = 2
13 nnre 8997 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1413ltp1d 8957 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
1514adantr 276 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 < (𝑁 + 1))
16 2re 9060 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
1716a1i 9 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 2 ∈ ℝ)
18 peano2nn 9002 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
1918nnred 9003 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
20 lttr 8100 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → ((2 < 𝑁𝑁 < (𝑁 + 1)) → 2 < (𝑁 + 1)))
2117, 13, 19, 20syl3anc 1249 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((2 < 𝑁𝑁 < (𝑁 + 1)) → 2 < (𝑁 + 1)))
2221expdimp 259 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 < (𝑁 + 1) → 2 < (𝑁 + 1)))
2315, 22mpd 13 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 2 < (𝑁 + 1))
2412, 23eqbrtrid 4068 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 · 2) < (𝑁 + 1))
25 1red 8041 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
2619adantr 276 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 + 1) ∈ ℝ)
27 2pos 9081 . . . . . . . . . . . . . . . 16 0 < 2
2816, 27pm3.2i 272 . . . . . . . . . . . . . . 15 (2 ∈ ℝ ∧ 0 < 2)
2928a1i 9 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (2 ∈ ℝ ∧ 0 < 2))
30 ltmuldiv 8901 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < (𝑁 + 1) ↔ 1 < ((𝑁 + 1) / 2)))
3125, 26, 29, 30syl3anc 1249 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 · 2) < (𝑁 + 1) ↔ 1 < ((𝑁 + 1) / 2)))
3224, 31mpbid 147 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < ((𝑁 + 1) / 2))
3319rehalfcld 9238 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℝ)
3433adantr 276 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝑁 + 1) / 2) ∈ ℝ)
3525, 34posdifd 8559 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 < ((𝑁 + 1) / 2) ↔ 0 < (((𝑁 + 1) / 2) − 1)))
3632, 35mpbid 147 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 0 < (((𝑁 + 1) / 2) − 1))
3736adantlr 477 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → 0 < (((𝑁 + 1) / 2) − 1))
38 elnnz 9336 . . . . . . . . . 10 ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((((𝑁 + 1) / 2) − 1) ∈ ℤ ∧ 0 < (((𝑁 + 1) / 2) − 1)))
3910, 37, 38sylanbrc 417 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (((𝑁 + 1) / 2) − 1) ∈ ℕ)
40 nncn 8998 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
41 xp1d2m1eqxm1d2 9244 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
4240, 41syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
4342eleq1d 2265 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4443adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4544adantr 276 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4639, 45mpbid 147 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → ((𝑁 − 1) / 2) ∈ ℕ)
4746a1d 22 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
4847expcom 116 . . . . . 6 (2 < 𝑁 → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
496, 48jaoi 717 . . . . 5 ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
504, 49mpcom 36 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
5150impancom 260 . . 3 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ))
521, 51sylbi 121 . 2 (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ))
5352imp 124 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cmin 8197   / cdiv 8699  cn 8990  2c2 9041  0cn0 9249  cz 9326  cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602
This theorem is referenced by:  nn0o  12072  gausslemma2dlem0b  15291
  Copyright terms: Public domain W3C validator