ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nno GIF version

Theorem nno 10999
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nno ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)

Proof of Theorem nno
StepHypRef Expression
1 eluz2b3 9060 . . 3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
2 nnnn0 8650 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 nn0o1gt2 10998 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
42, 3sylan 277 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
5 eqneqall 2265 . . . . . . 7 (𝑁 = 1 → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
65a1d 22 . . . . . 6 (𝑁 = 1 → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
7 nn0z 8740 . . . . . . . . . . . 12 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
8 peano2zm 8758 . . . . . . . . . . . 12 (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
97, 8syl 14 . . . . . . . . . . 11 (((𝑁 + 1) / 2) ∈ ℕ0 → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
109ad2antlr 473 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
11 2cn 8464 . . . . . . . . . . . . . . 15 2 ∈ ℂ
1211mulid2i 7470 . . . . . . . . . . . . . 14 (1 · 2) = 2
13 nnre 8401 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1413ltp1d 8363 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
1514adantr 270 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 < (𝑁 + 1))
16 2re 8463 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
1716a1i 9 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 2 ∈ ℝ)
18 peano2nn 8406 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
1918nnred 8407 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
20 lttr 7538 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → ((2 < 𝑁𝑁 < (𝑁 + 1)) → 2 < (𝑁 + 1)))
2117, 13, 19, 20syl3anc 1174 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((2 < 𝑁𝑁 < (𝑁 + 1)) → 2 < (𝑁 + 1)))
2221expdimp 255 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 < (𝑁 + 1) → 2 < (𝑁 + 1)))
2315, 22mpd 13 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 2 < (𝑁 + 1))
2412, 23syl5eqbr 3870 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 · 2) < (𝑁 + 1))
25 1red 7482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
2619adantr 270 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 + 1) ∈ ℝ)
27 2pos 8484 . . . . . . . . . . . . . . . 16 0 < 2
2816, 27pm3.2i 266 . . . . . . . . . . . . . . 15 (2 ∈ ℝ ∧ 0 < 2)
2928a1i 9 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (2 ∈ ℝ ∧ 0 < 2))
30 ltmuldiv 8307 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < (𝑁 + 1) ↔ 1 < ((𝑁 + 1) / 2)))
3125, 26, 29, 30syl3anc 1174 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 · 2) < (𝑁 + 1) ↔ 1 < ((𝑁 + 1) / 2)))
3224, 31mpbid 145 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < ((𝑁 + 1) / 2))
3319rehalfcld 8632 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℝ)
3433adantr 270 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝑁 + 1) / 2) ∈ ℝ)
3525, 34posdifd 7985 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 < ((𝑁 + 1) / 2) ↔ 0 < (((𝑁 + 1) / 2) − 1)))
3632, 35mpbid 145 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 0 < (((𝑁 + 1) / 2) − 1))
3736adantlr 461 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → 0 < (((𝑁 + 1) / 2) − 1))
38 elnnz 8730 . . . . . . . . . 10 ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((((𝑁 + 1) / 2) − 1) ∈ ℤ ∧ 0 < (((𝑁 + 1) / 2) − 1)))
3910, 37, 38sylanbrc 408 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (((𝑁 + 1) / 2) − 1) ∈ ℕ)
40 nncn 8402 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
41 xp1d2m1eqxm1d2 8638 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
4240, 41syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
4342eleq1d 2156 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4443adantr 270 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4544adantr 270 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4639, 45mpbid 145 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → ((𝑁 − 1) / 2) ∈ ℕ)
4746a1d 22 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
4847expcom 114 . . . . . 6 (2 < 𝑁 → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
496, 48jaoi 671 . . . . 5 ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
504, 49mpcom 36 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
5150impancom 256 . . 3 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ))
521, 51sylbi 119 . 2 (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ))
5352imp 122 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 664   = wceq 1289  wcel 1438  wne 2255   class class class wbr 3837  cfv 5002  (class class class)co 5634  cc 7327  cr 7328  0cc0 7329  1c1 7330   + caddc 7332   · cmul 7334   < clt 7501  cmin 7632   / cdiv 8113  cn 8394  2c2 8444  0cn0 8643  cz 8720  cuz 8988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989
This theorem is referenced by:  nn0o  11000
  Copyright terms: Public domain W3C validator