ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nno GIF version

Theorem nno 11592
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nno ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)

Proof of Theorem nno
StepHypRef Expression
1 eluz2b3 9391 . . 3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
2 nnnn0 8977 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 nn0o1gt2 11591 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
42, 3sylan 281 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
5 eqneqall 2316 . . . . . . 7 (𝑁 = 1 → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
65a1d 22 . . . . . 6 (𝑁 = 1 → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
7 nn0z 9067 . . . . . . . . . . . 12 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
8 peano2zm 9085 . . . . . . . . . . . 12 (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
97, 8syl 14 . . . . . . . . . . 11 (((𝑁 + 1) / 2) ∈ ℕ0 → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
109ad2antlr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
11 2cn 8784 . . . . . . . . . . . . . . 15 2 ∈ ℂ
1211mulid2i 7762 . . . . . . . . . . . . . 14 (1 · 2) = 2
13 nnre 8720 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1413ltp1d 8681 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
1514adantr 274 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 < (𝑁 + 1))
16 2re 8783 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
1716a1i 9 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 2 ∈ ℝ)
18 peano2nn 8725 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
1918nnred 8726 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
20 lttr 7831 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → ((2 < 𝑁𝑁 < (𝑁 + 1)) → 2 < (𝑁 + 1)))
2117, 13, 19, 20syl3anc 1216 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((2 < 𝑁𝑁 < (𝑁 + 1)) → 2 < (𝑁 + 1)))
2221expdimp 257 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 < (𝑁 + 1) → 2 < (𝑁 + 1)))
2315, 22mpd 13 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 2 < (𝑁 + 1))
2412, 23eqbrtrid 3958 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 · 2) < (𝑁 + 1))
25 1red 7774 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
2619adantr 274 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 + 1) ∈ ℝ)
27 2pos 8804 . . . . . . . . . . . . . . . 16 0 < 2
2816, 27pm3.2i 270 . . . . . . . . . . . . . . 15 (2 ∈ ℝ ∧ 0 < 2)
2928a1i 9 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (2 ∈ ℝ ∧ 0 < 2))
30 ltmuldiv 8625 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < (𝑁 + 1) ↔ 1 < ((𝑁 + 1) / 2)))
3125, 26, 29, 30syl3anc 1216 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 · 2) < (𝑁 + 1) ↔ 1 < ((𝑁 + 1) / 2)))
3224, 31mpbid 146 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < ((𝑁 + 1) / 2))
3319rehalfcld 8959 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℝ)
3433adantr 274 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝑁 + 1) / 2) ∈ ℝ)
3525, 34posdifd 8287 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 < ((𝑁 + 1) / 2) ↔ 0 < (((𝑁 + 1) / 2) − 1)))
3632, 35mpbid 146 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 0 < (((𝑁 + 1) / 2) − 1))
3736adantlr 468 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → 0 < (((𝑁 + 1) / 2) − 1))
38 elnnz 9057 . . . . . . . . . 10 ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((((𝑁 + 1) / 2) − 1) ∈ ℤ ∧ 0 < (((𝑁 + 1) / 2) − 1)))
3910, 37, 38sylanbrc 413 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (((𝑁 + 1) / 2) − 1) ∈ ℕ)
40 nncn 8721 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
41 xp1d2m1eqxm1d2 8965 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
4240, 41syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
4342eleq1d 2206 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4443adantr 274 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4544adantr 274 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → ((((𝑁 + 1) / 2) − 1) ∈ ℕ ↔ ((𝑁 − 1) / 2) ∈ ℕ))
4639, 45mpbid 146 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → ((𝑁 − 1) / 2) ∈ ℕ)
4746a1d 22 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) ∧ 2 < 𝑁) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
4847expcom 115 . . . . . 6 (2 < 𝑁 → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
496, 48jaoi 705 . . . . 5 ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ)))
504, 49mpcom 36 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ≠ 1 → ((𝑁 − 1) / 2) ∈ ℕ))
5150impancom 258 . . 3 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ))
521, 51sylbi 120 . 2 (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ))
5352imp 123 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  wne 2306   class class class wbr 3924  cfv 5118  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613  1c1 7614   + caddc 7616   · cmul 7618   < clt 7793  cmin 7926   / cdiv 8425  cn 8713  2c2 8764  0cn0 8970  cz 9047  cuz 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320
This theorem is referenced by:  nn0o  11593
  Copyright terms: Public domain W3C validator