ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju2ndl GIF version

Theorem eldju2ndl 7121
Description: The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndl ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) = ∅) → (2nd𝑋) ∈ 𝐴)

Proof of Theorem eldju2ndl
StepHypRef Expression
1 df-dju 7087 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
21eleq2i 2260 . . . 4 (𝑋 ∈ (𝐴𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
3 elun 3300 . . . 4 (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
42, 3bitri 184 . . 3 (𝑋 ∈ (𝐴𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
5 elxp6 6213 . . . . 5 (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)))
6 simprr 531 . . . . . 6 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)) → (2nd𝑋) ∈ 𝐴)
76a1d 22 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
85, 7sylbi 121 . . . 4 (𝑋 ∈ ({∅} × 𝐴) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
9 elxp6 6213 . . . . 5 (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)))
10 elsni 3636 . . . . . . 7 ((1st𝑋) ∈ {1o} → (1st𝑋) = 1o)
11 1n0 6476 . . . . . . . 8 1o ≠ ∅
12 neeq1 2377 . . . . . . . 8 ((1st𝑋) = 1o → ((1st𝑋) ≠ ∅ ↔ 1o ≠ ∅))
1311, 12mpbiri 168 . . . . . . 7 ((1st𝑋) = 1o → (1st𝑋) ≠ ∅)
14 eqneqall 2374 . . . . . . . 8 ((1st𝑋) = ∅ → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐴))
1514com12 30 . . . . . . 7 ((1st𝑋) ≠ ∅ → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
1610, 13, 153syl 17 . . . . . 6 ((1st𝑋) ∈ {1o} → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
1716ad2antrl 490 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
189, 17sylbi 121 . . . 4 (𝑋 ∈ ({1o} × 𝐵) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
198, 18jaoi 717 . . 3 ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
204, 19sylbi 121 . 2 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
2120imp 124 1 ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) = ∅) → (2nd𝑋) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  wne 2364  cun 3151  c0 3446  {csn 3618  cop 3621   × cxp 4653  cfv 5246  1st c1st 6182  2nd c2nd 6183  1oc1o 6453  cdju 7086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-suc 4400  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-iota 5207  df-fun 5248  df-fv 5254  df-1st 6184  df-2nd 6185  df-1o 6460  df-dju 7087
This theorem is referenced by:  updjudhf  7128  subctctexmid  15436
  Copyright terms: Public domain W3C validator